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Abstract

The current stock assessment model for American plaice (Hippoglossoides platessoides) on the Grand 
Bank of Newfoundland (NAFO Divisions 3LNO) is a virtual population analysis (VPA). This model 
does not account for the considerable uncertainty about the landings data for this stock. Retrospective 
patterns have also been noted in the current assessment with overestimation of spawning stock biomass 
(SSB) and underestimation of fishing mortality (F). Via a thorough model selection process, we develop 
a state-space stock assessment model (SSM) for this stock that accounts for the uncertainties in the 
landings data and reduces the retrospective patterns. Our SSM fit the data well, with overall trends in 
SSB and average F (ages 9–14) similar to those estimated from the current VPA. The retrospective 
patterns for the SSM were reduced for both SSB and average F which should lead to the provision of 
better scientific advice for the management of this stock. An important result from our analysis suggests 
that the current assumption for natural mortality (M) in the stock assessment model may be too low. 
The lack of recovery of the stock of American plaice on the Grand Bank has often been attributed to 
overfishing, however fixing M within the model to be lower than is reasonable may be over-estimating 
the relative impact of F and subsequently over-stating the contribution of fishing mortality to the lack 
of recovery of the stock.

Introduction

American plaice (Hippoglossoides platessoides) on the 
Grand Bank of Newfoundland (NAFO Divisions 3LNO) 
supported an important commercial fishery historically, 

accounting for over ten percent of the Canadian groundfish 
fishery in the 1950s (DFO, 2011). The population size 
declined rapidly in the 1980s due mostly to overfishing 
and, although there has been no directed commercial 
fishing since 1994, there has since been little improvement 
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in the state of the population (see e.g. Wheeland, 2018). 
The lack of recovery has been attributed to overfishing, 
which has occurred mainly through bycatch in the 
yellowtail flounder, skate, redfish, and Greenland halibut 
fisheries (Shelton and Morgan, 2005). It has also been 
suggested that an increase in the natural mortality rate due 
to changing ocean temperatures may also be contributing 
to the lack of recovery (COSEWIC, 2009).

The current stock assessment model for Grand Bank 
American plaice is an ADAPT virtual population analysis 
(see e.g., Lassen and Medley, 2001) that was introduced 
in the late 1990s. This model is based on catch-at-age 
data that are derived in part from landings estimates and 
does not account for the considerable uncertainty about 
the landings data (Wheeland et al., 2018). Sources of 
uncertainty include landings recorded as “unspecified 
flounder” by some countries in the earliest years of 
available data (see e.g. Pitt, 1972) and an increase in 
foreign catch outside the 200 mile economic exclusive 
zone in the mid-80s (e.g. South Korea reporting “non-
specified flounder”, Brodie, 1986). More recently, the 
lack of scientific observer data in the NAFO Regulatory 
Area has resulted in the need to estimate landings via 
various methods, including effort ratios and daily catch 
records (Dwyer et al., 2016). As a result, the landings data 
may be under-estimated and a stock assessment model 
that incorporates uncertainty in these data may therefore 
provide a better assessment. 

Another issue that has been noted in the current assessment 
for American plaice are retrospective patterns, which 
are consistent directional changes in estimates of stock 
size as years of data are removed from the assessment 
model (Mohn, 1999). Retrospective patterns are caused 
by changes in the accuracy of the data over time and/or 
spatial and time-varying population processes that are 
unaccounted for or mis-specified in the model (see e.g. 
Legault, 2009). Systematic retrospective patterns can 
lead to poor management advice as important population 
processes (e.g. biomass and fishing mortality) may be 
over- or under-estimated and can result in unsustainable 
or sub-optimal harvesting advice (Szuwalski et al., 2017). 
To promote sustainable management advice for American 
plaice on the Grand Bank of Newfoundland, a stock 
assessment model that reduces or eliminates retrospective 
patterns is valuable. State-space stock assessment models 
are ideally suited for this purpose as they can include 
random errors in the underlying population dynamics 
model (i.e. for population abundance and fishing mortality 
rates) thereby accounting for underlying time-varying 
population processes that contribute to retrospective 
patterns. Additionally, state-space models allow for errors 
in the data (see e.g. Nielsen and Berg, 2014; Cadigan, 

2015; Albertsen et al., 2016), which is an improvement to 
the current VPA that treats the catch-at-age data as known 
with negligible error. In this paper, we present a state-space 
stock assessment model for American plaice on the Grand 
Bank of Newfoundland that reduces the retrospective 
problem and allows for errors in the landings data. 

Materials and Methods

There are two components to a state-space stock assessment 
model: the process model and the observation model. The 
process model describes how the state of the unobserved 
fish stock abundance and fishing mortality rates at a given 
time depend on previous states. The observation model 
describes how the survey and commercial data depend 
on the unobserved states (see e.g. Aeberhard et al., 2018). 

American plaice Process Model

The model runs for the years  y = 1960, ..., 2017  and for 
ages  a = 1, ...,  15   +  , where   15   +   represents the oldest ages 
grouped together from ages 15 onwards, called the plus 
group (see Table 1 for model equations). For simplicity, we 
will refer to model ages  a = 1, ...,  A   +  , and years  y = 1, ..., Y . 
The process model describes how the abundance at age a in 
year  y  (i.e.   N  y,a   ) and the fishing mortality,   F  y,a    change over 
time. The   N  y,a    for all ages and years are treated as random 
effects, with the cohort abundance model modelled as: 

   
 log (    N  y,a   )   = log (    N  y−1,a−1   )   −  Z  y−1,a −1   +  γ  y,a   

     
 log   (  N  y, A   +    )   = log [ N  y−1, A   + −1    exp   − Z  y−1, A   + −1    +  N  y−1, A   +     exp   − Z  

y−1, A   + 
   ]  +  γ  y,a  , 

  

where   Z  y,a   =  M  y,a   +  F  y,a    is the total mortality rate given by 
the sum of the natural mortality rate,   M  y,a    (i.e. all mortality 
unrelated to fishing) and   F  y,a   . Here,   M  y,a    is assumed to 
be known and fixed at 0.50 for ages 1–3, 0.30 for age 4 
and 0.20 for all ages 5 and above, except during 1989 to 
1996, where it is fixed at 0.53 for all ages 5 and above, as 
recommended by Morgan and Brodie (2001), 0.83 for ages 
1–3 and 0.63 for age 4. This formulation for   M  y,a    for ages 
5 and greater is identical to the formulation for the most 
recent stock assessment model for Grand Bank American 
plaice. Here we also include ages 1–4, which are not 
currently used in the stock assessment VPA, with values 
for M at these ages selected through peer consultation.   F  y,a   
is set to zero for ages 1–4, as reported catch at these ages 
is considered negligible. The   γ  y,a    are the process errors, 
assumed to be independent and normally distributed with 
variance   σ  pe  2    to be estimated. The numbers at the first age   
N  y,1    are modelled as:
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   log (    N  y,1   )   =  μ   R  y     +  δ   R  y    ,          (1.2)

where   μ   R  y    =  μ   R  1     for y < 1993 and   μ   R  y    =  μ   R  2     for 
y  ≥ 1993, and the two mean recruitment parameters     
μ   R  1    ,  μ   R  2     ∈  (  − ∞, ∞ )     account for the large differences in 
recruitment between the two time periods and are fixed 
effect parameters to be estimated. The deviations from 
the mean recruitment   δ   R  y      are assumed to follow a normal 
distribution with AR(1) correlation across years, with the 
AR parameters   σ  2  R    and   ϕ  R    to be estimated across the entire 
time series, as we expect recruitment to be more alike in 
years that are closer together.

We assume that the fishing mortality rates increase with 
age, i.e.,

 Fy,a = Fy,a-1+δFy,a, for a=7,..,15.  (1.3)

For ages 5 and 6,   F  y,a   =  μ   F  y,a     +  δ   F  y,a     , where   μ   F  y,a      is the mean 
fishing mortality rate, a fixed effect parameter to be 
estimated. A separate   μ   F  y,a      is estimated for ages 5 and 6, 
for two blocks: 1960–1994 and 1995–2017 (i.e. four 
fixed effect   μ   F  y,a      parameters). The age blocking of the   
μ   F  y,a     ’s was chosen to reflect overall fishery selectivity 
patterns, and the year blocks were chosen to account for 
the closure of the commercial fishery in 1994. The   δ   F  y,a      
are positive deviations from the fishing mortality rate 
at the previous age and are treated as random effects. 
The   δ   F  y,a    ̓s  are assumed to follow a normal distribution, 
with the deviations at the first age,   δ   F  y,5     , assumed to have 
AR(1) correlation across years with parameters   σ   F  5    

2     ,  ϕ   F  5     to 
be estimated. We treat the   δ   F  y,a    ̓s  separately for age 5 fish 
as visual inspection of the catch-at-age data indicated 
that age 5 fish were not actively targeted in the earliest 
years of the fishery. The   δ   F  y,a    ̓s  at ages 6–15+ were treated 
as a correlated AR(1) process, separable across ages and 
years, with parameters   σ   F6   +   

2     ,  ϕ   F  A 6   +     ,  ϕ   F  Y 6   +      to be estimated. We 
fit an AR(1) process across ages and years for age 6–15+ 

because fish that are closer in age and time are expected 
to have   δ   F  y,a     that are more similar than those that are further 
apart. The final formulation for the AR(1) parameters were 
determined via a model fitting process described in the 
exploratory process below. 

Observation model

The observation model includes data from the commercial 
fishery and scientific research trawl surveys. There are 
two basic types of fishery information: total landed 
weight, and the size (length, weight) and age composition 
of the landings. Both these sources of information are 
used to derive annual fishery catch numbers-at-age. In 
the integrated assessment model philosophy, these data 

sources should enter into the assessment model fitting 
via separate observation models (i.e. one likelihood 
component for the age composition and one for the 
landings). We particularly want to focus our model 
estimation to include uncertainty in landings. Therefore, 
for pragmatic reasons, we used landings information 
(1960–2017) and the catch proportions-at-age (ages 
5–15+ during 1960–2017) as independent data sources 
for model estimation. We only use commercial data from 
1960 onwards as there was insufficient sampling before 
1960. The current assessment model also does not use data 
prior to 1960. Age-based indices of stock abundance (i.e. 
numbers) are derived from the Canadian fall and spring 
research surveys in NAFO Divs. 3LNO (see Dwyer et al., 
2014 for details) and the Spanish research survey in the 
portions of NAFO Divs. 3NO outside of the Canadian 
Exclusive Economic Zone (EEZ; González-Troncoso 
et al., 2017) were also used in model estimation. Indices 
were for ages 1–15+ for all surveys, for years 1990–2017 
for the fall survey (2004 and 2014 omitted due to poor 
survey coverage), 1985–2016 for the spring survey (2006 
and 2015 omitted due to poor survey coverage) and 
1997–2016 for the Spanish survey. 

Catch age composition data

We fit the age composition data using the continuation ratio 
logit (crl) transformation (see e.g. Cadigan, 2015; Berg 
and Kristensen, 2012; Agresti, 2003). A direct observation 
model for the matrix of observed catch proportions each 
year is complicated because of the constraints   P  oa   ≥ 0  and  
∑  P  oa   = 1 . We use the crl which maps   P  a    for  a = 1, ...,  
A  max    into    X  a   ∈  (   − ∞ , ∞ )     for  a = 1, ...,  A  max   − 1 . The 
unconstrained crls are derived from the multiplicative 
logistic transformation,

   X  a   = log [   P  a   _  P  a+1   + ...+  P   A  max     ] , a = 5, ...,  A  max   − 1.    (1.4)

where   A  max    is the plus group. Recall that there is no catch 
data for ages 1–4. The inverse transformation of (1.4) is:

   P  a   =  
{

  
  exp (    X  a   )   _  ∏ i=1  a    (  1 + exp (    X  i   )   )    ,  

a = 5, ...,  A  max   − 1
    

  1 ___________  ∏ i=1   A  max  ‾1   (  1 + exp (    X  i   )   )    ,
  

a =  A  max  .
     (1.5)

The crls for the observed catch proportions-at-age data 
(i.e.   X  oy,a   ) are calculated from (1.4) and the observation 
model we use is based on assuming the model residuals 
(  X  oy,a   −  X  y,a   ) have a normal distribution with AR(1) 
correlation separable across ages and years with 
parameters   ϕ   C  A    ,  ϕ   C  Y     ,  σ    C   

y,a
    2      to be estimated, as we expect the 

crl errors to be similar for fish that are closer in age and 
time. Various age and year formulations were explored for   
σ   C  y,a    

2    and are described in the exploratory process below.
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Table 1. State-space model equations (see corresponding sections for details).    

Process model
Recruitment

l  og (    N  y,1   ) = μ R  y  
+δ R  y  

    δ R  y    ~N(μ R  y  
,σR   )

AR1(y)inδ R  y  
   

μ R  1  
fory≤1993μ R  2  

fory>1993

Abundance   log  (    N  y,a   )   = log  (    N  y−1,a−1   )  −Zy−1,a−1   +  γ  y,a    

  log    (  N  y, A   +    )   = log [ N  y−1,A   +−1    exp   −Zy−1,A+−1    +  N  y−1,A+     exp   −Zy−1,A   +    ]  + γ y,a    
γy,a~N(0,σpe   )

Fishing  
mortality

  F  y,a = μ F  y,a  
+δ F  y,a  

      for a = 5,6 

  F  y,a   =  F  y,a−1+δ F  y,a  fora = 7−15

δ F  y,a  
~N(0,σ F  5  

;σ F   6   +   
   )

AR1(y)inδ F  y,5  
   

AR1(y,a)inpositiveδ F  y,6+      

μ F  y,a  
    for ages 5, 6, for  

1960–1994/1995–2017

Observation model

Landings Censored likelihood:

 Pr ( B  ly ≤ L  y ≤ B  uy  )  = Φ {  
 log (  B  uy / L  y   )  

 _  σ  LC    }−Φ {  
log (    B  ly / L  y   )  

 _  σ  C   L  }  

εL  ~ LN (  0,0.05  )

Age  
composition

  X   O  a,y      =   X  a,y   +   C   y,a          ε   C  y,a    ~ LN (  0,  σ   C  y,a      )

Survey indices

Catchability 

  I  s,y,a   =  q  s,a    N  y,a    exp   −fs,yZy,a  +ε I  s,y,a     

  q  s,a   =  q  s,a−1+δ q  s,a    ,    
   ε   I  s,y,a    ~ N (  0,  cv  s  ∙I  s,y,a    ),

δ q  s,a      are positive

separate q  for Campelen and  
Engeltrawlsforages1–4for 

fall and spring

Landings data

Dwyer et al. (2016) reported uncertainties about the 
reliability of the landings data for Grand Bank American 
plaice. To account for this, we treat reported landings as 
a lower bound for true landings (i.e. not all catches are 
reported). We assume that there is an upper bound for 
landings that varies with the reliability of data (see Table 
2 for details). We used a censored likelihood approach in 
which the bounds are treated as the only information about 
landings (see e.g. Hammond and Trenkel, 2005; Bousquet 
et al., 2010; Cadigan, 2015; Van Beveren et al., 2017). We 
assume the true landings could be accurately estimated 
with a CV of 5%. Let Bly and Buy denote the lower and 
upper bounds and   σ  L   = 0.05 . The negative loglikelihood 
(nll) for the landings bounds data is:

   nll (    L  1  , … ,  L  Y    |   { B  ly  ,  B  uy  ; y = 1, … Y}  |   )   =

                              ∑ 
y=1  Y   log [Φ {  log (  B  uy   /  L  y   )   _  σ  L    }  − Φ {  log (    B  ly   /  L  y   )    _  σ  L    } ]    , (1.6)

where   L  1  , … ,  L  Y    are the model predicted landings. We fixed   
σ  L    at a small value to ensure that the estimates of landings 
are between the bounds for most years. 

The Baranov catch equation is used to model commercial 
catch as a function of  N, F  and  Z ,

    C  y,a   =    F  y,a   _  Z  y,a    (  1 −  exp   − Z  y,a    )    N  y,a  .    (1.7) 

Model predicted catch proportion at age (  P  a   =  C  a   /  ∑ a    C  a    ) 
were fit to observed proportions, as described in the previous 
section. Commercial average weights-at-age (  W  y,a   ) were 
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Table 2.  Upper catch bounds (UB) for estimated landings with associated justification for bounds; RC is reported catch. Discussion 
on catch uncertainties can be found in Wheeland et al. 2018, and references therein

Period UB Comments

1960–1976 2xRC “Unspecified flounder” by some countries. See, for example, (Pitt, 1972).

1977–1982 1.2xRC Landings by primarily Canada (>95%) after establishment of 200 mile exclusive economic zone 
(EEZ).

1983–1993 1.5xRC Increased foreign catch outside 200 miles. Various estimates used for catch estimates.  Issues 
with unspecified flounder records and discarding

1994–2010 1.2xRC No directed fishing in 1994 (bycatch quota), 0 TAC 1995 onwards. Catches defined from various 
sources with those considered most reliable by Scientific Council used for totals

2011–2017 1.5xRC Loss of availability of scientific observer data in the NAFO Regulatory area and surveillance 
estimates. Varying methods applied to obtain catch estimates including effort ratios (Dwyer  
et al., 2016), daily catch records, and NAFO CESAG estimates (NAFO, 2017)

calculated by Rivard’s method (Rivard, 1980) and are 
used to calculate model predicted landings each year,   
L  y   =  ∑ a     W  y,a   C  y,a    .

Survey data

The model-predicted catch for survey s is:

   I  s,y,a   =  q  s,a    N  y,a    exp   − f  s,y   Z  y,a      (1.8)

where  f  represents the fraction of the year the survey 
takes place ( 0.460  for the Canadian spring and Spanish 
surveys and  0.875  for the Canadian fall survey). As in 
our treatment of the fishing mortality rates, we model 
the survey catchabilities,   q  s,a   , as increasing with age for 
each survey:

  q  s,a   =  q  s,a−1   +  δ   q  s,a    ,     for a=2,..,15.     

Here, the   δ   q  s,a      are positive deviations from the   q  s,a    in the 
previous year and are treated as fixed effects. We note 
that the   δ   q  s,a      are always positive to ensure that the q’s 
increase with age and are treated as fixed effects since 
they are part of the observation equation and not the 
unobserved population process. For age 1 fish, the   q  s,a    
parameters are freely estimated, with no added deviation. 
In 1995 the trawl used in the Canadian surveys changed 
from the Engel to the Campelen (see e.g. Dwyer et. al., 
2016). Although Engel catch data were adjusted based 
on information from comparative fishing to match the 
Campelen catches, in our model ages 1–4 are given a 
separate q for each gear period due to issues in conversion 
of survey catches at these ages (Dwyer et. al., 2016). 
The indices are assumed to follow a normal distribution, 
with mean   I  s,y,a    and standard deviation   σ  s,a   =  cv  s,a   ∙  I  s,y,a   , 

where   CV  s    represents a separate coefficient of variation 
(CV) parameter for each survey, to be estimated. Various 
age formulations for each survey CV were explored and 
are detailed in the exploratory process below. We treated 
each survey as from an AR(1) process across ages with 
independent parameter s  ϕ  s    to be estimated. A constant 
CV variance model for I is approximately the same as 
assuming log(I) has constant variance; however, an 
advantage of our approach is that we can use observed zero 
indices directly in the model whereas in other assessment 
packages these index zeros are typically excluded which 
is not appropriate when there are many zeros which occur 
non-randomly over time. 

Estimation

The fixed-effects parameters to estimate (i.e.  θ ) are 
listed in Table 3. The unobserved states (i.e.   δ   F  y,a    ,  N  y,a   ) 
are integrated out of the joint likelihood function and 
the estimation of  θ  is based on maximizing the marginal 
likelihood   L (  θ  )    : 

   L (  θ )   =  ∭ Ψ     f  θ   (  D |  Ψ )    g  θ   (  Ψ )   ∂ Ψ       (1.9)

where  Ψ  is the vector of all random effects,    f  θ   (  D |  Ψ )     is the 
joint probability density function of the data (D; commercial 
landings, catch proportions at-age, commercial average 
weights-at-age, and Canadian fall, Canadian spring and 
Spanish survey indices) and    g  θ   (  Ψ )    is the joint probability 
density function for the random effects. The TMB 
(Kristensen et al., 2016) package in R is used to integrate 
the marginal likelihood (1.9), which is performed via the 
Laplace approximation (see Skaug and Fournier, 2006 
for details). The nlminb package in R is used to minimize 
the negative log likelihood function provided by TMB. 
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The final model formulation was determined via a thorough 
exploratory process. The overall goal of the exploratory 
process was to determine the best model formulation for 
the survey CVs, the crl   σ   C  y,a    

2    (sds) and the q age-aggregating 
(detailed below). The Bayesian information criterion 
(BIC) was used in model selection since BIC penalizes 
more heavily for extra parameters when the sample size 
is large. Previous work has shown that the correlation 
parameters can be difficult to estimate reliably (see, 
e.g., Johnson et al., 2016; Xu et al., 2019), thus for our 
exploratory process, we conducted four exploratory runs 
with fixed AR(1) parameters: S1)   ϕ  s    freely estimated for 
each survey,  all  ϕ  F   = 0.90,   ϕ   C  A     = 0.9,   ϕ   C  Y  

   = 0.75; S2)   ϕ  s    freely 
estimated for each survey,  all  ϕ  F   = 0.90,   ϕ   C  A     = 0.9,   ϕ   C  Y     = 0; 
S3) all   ϕ  s   ,   ϕ  F   ,   ϕ  C    = 0.50; S4) all   ϕ  s   ,   ϕ  F   ,    ϕ  C    = 0. In all cases, 
the exploratory process began with the simplest model: 
with one sd parameter estimated for the crls, and one CV 
parameter per survey (see Table 3) and followed the 6 
steps below. Within each step, the model was refit for each 
assumption (e.g. in step 1 the model was refit 10 times, 
for q age-aggregating 5,..,14):

1) q age-aggregating: for each age 5,..,14 fix 
survey    δ   +    q  s,a      = 0 for all subsequent ages (e.g. q5+ 
is one run with    δ   +    q  s,a        fixed at 0 for ages 6+). q age-
aggregating selected from run with lowest BIC1.

2) CV combinations: for each survey using q age-
aggregating from 1) fit all combinations (pooled and 
unpooled; see Supplementary Materials 1 for details) 
of CV ages while keeping one CV parameter for other 
two surveys. Survey CV formulations for each survey 
selected from run with lowest BIC.

3) re-check q: with survey CVs from 2), re-run 1) to 
check that q age-aggregation is the same as in 1) 

4) crl sd ages: with survey CVs from 2) and q from 1), fit 
all combinations of crl sd ages. crl sd age formulation 
selected from run with lowest BIC.

5) crl sd years: with q from 1), survey CVs from 2), and 
crl sd ages from 4), fit two scenarios: 

a. pre/post moratorium split: fit a separate age sd 
parameter pre/post moratorium for year split start   
∈  (  1990, 1999 )    

b. moratorium gap: fit one separate sd parameter 
(no age splitting) for 10-year mortarium gap for 
year gap start   ∈  (  1990, 1999)  . 

1 Note for q exploratory purposes (i.e. Step 1), the lowest AIC 
(Akaike information criterion) was used for model selection, since 
in all cases, the BIC selected the model with the fewest q param-
eters, and this was considered unrealistic for this stock

crl sd year formulation selected from run with lowest 
BIC from both a and b

6) re-check q: with survey CVs from 2), crl sd ages 
and years from 4–5, re-do 1) to check that q age-
aggregation is the same as in 1)

The best fitting model was selected from step 6 for each 
of the four runs (i.e. one best fitting model for runs S1-
S4 selected via lowest BIC from step 6) and model fit 
compared across all four via a detailed examination of 
model residuals and BIC. Evidence of patterns in residuals 
(i.e. blocks of ages and years having residuals of the 
same sign, and whether or not overall residual variability 
matches assumption) was used to evaluate potential model 
mis-specification. The survey and continuation ratio logit 
residuals, which are correlated in our observation models, 
were standardized using the Choleski factorization of 
their estimated covariance matrix. We did not use the 
one-step ahead residual method (see e.g. Thygesen et al., 
2017) because it does not allow for correlations in the 
observations. A final model was selected from the four 
S1–S4 best fitting runs (i.e. via BIC and residual fits) 
and in the final step, two extra runs were fit; one with  all  
ϕ  F    parameters freely estimated and all   ϕ  C    fixed and one 
with all AR(1) parameters freely estimated (O2). These 
two runs were compared to the run with the fixed AR(1) 
parameters (O1), and a final model selected from the three. 
In all subsequent text, SSM will refer to the final model.

The SSM fit was also assessed through retrospective 
model fitting for the years 2011–2017. Each retrospective 
model fit used one less year of data (i.e. model for year 
2011 used data up to 2011) and predicted abundance, 
biomass, spawning stock biomass and average F’s were 
examined for systematic patterns and the severity of 
retrospective pattern was assessed using Mohn’s rho (see 
Mohn, 1999). Ideally, no discernable directional patterns 
will be present in the retrospective plots.

Biomass-at-age was calculated by multiplying predicted 
numbers at age (i.e.   N  y,a   ) and stock weights-at-age, which 
were estimated externally via a spatiotemporal biphasic 
Von Bertalanffy growth model (see Kumar et al., 2020). 
Length and age data are collected for American plaice 
from research survey vessels using a length-stratified age 
sampling design and Perreault et al. (2019) showed that 
ignoring this sampling design can lead to biased growth 
model parameter estimates. Kumar et al.’s method (2020) 
accounted for the length-stratified age sampling design. 
The 3LNO stock weights were combined for each division 
by weighting the values for each division by the average 
abundance index at age during 1975–2017. Stock weights 
prior to 1975 were fixed at the mean values for 1975–77. 
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Table 3:  Base model for exploratory process; a+ is q age-aggregation (e.g. q5+ is model with q deviations fixed at 0 for ages 6+). 
Age groupings for survey CVs and sd crls are for subsequent ages (e.g. a separate sd parameter pooled for ages (1–4)
(5–6)(7–15)). See Supplementary Materials 1 for details.

Type Parameters

Base model

Process error variance   σ  pe  2   

Mean recruitment   μ   R   1  
    for y ≤ 1993  and   μ   R   2      for y > 1993

Variance and correlation of log-recruitment deviations   σ  R  2 ,  ϕ  R   

Mean F   μ   F  y,a  
    for ages 5, 6, and two time blocks: 1960–1994/1995–2017

Variance at age 5, 6–15+   σ   F  5    
2   ,   σ   F6   +   

2   

Model exploration S1-S4

Survey q’s
 Canadian spring survey   δ  s,a+  , for s = Canadian spring, fall, Spanish surveys 

              a+ = age aggregation explored for ages 5–14
 Canadian fall survey 
 Spanish survey 
Survey coefficients of variation 

  cv  s,a  , for s = Canadian spring, fall, Spanish surveys 
              a = various age groupings (1–15)

 Canadian spring survey
 Canadian fall survey
 Spanish survey

Catch age composition variance    σ   C  y,a  
  2  , for a = various age groupings  (  5−14 )    

Survey residual correlations   ϕ  s    for s=Canadian spring, fall, Spanish surveys

Year-correlation of F deviations at age 5, 6–15+   ϕ   F  5  
  ,  ϕ   F  A 6   +   

  ,  ϕ   F  Y 6   +   
   

Catch age correlation   ϕ   C  A    ,  ϕ   C   Y     

Estimates of maturity-at-age were taken from Wheeland 
et al. (2018). 

Simulation and sensitivity testing 

A full simulation study is beyond the scope of this paper; 
however, we conducted a simple self-simulation test 
and jittered start on the SSM to examine the reliability 
of the model estimates (see e.g. Cadigan, 2015; Nielsen 
and Berg, 2014). The self-simulation test randomly 
generates survey indices and continuation ratio logit catch 
proportions from the model predictions and assumed 
distributions detailed above. Process errors and other 
random effects are treated as fixed when generating the 
data and the model is re-fitted to the simulated data. This 
process is repeated 1000 times and estimates of SSB, 
average fishing mortality rates (ages 9–14), recruitment, 
variance and autocorrelation parameters are stored. We 
calculated the relative difference of the estimates for each 

year (i.e. (simulation SSBy – data-based SSBy)/ data-based 
SSBy) for comparison.

The jittered start test re-fits the model with random noise 
added to the starting parameter values, generated from   N 
(  0,0.25 ∙   ̂  μ   )    , where    ̂  μ    is the model predicted parameter 
of interest. The model is re-optimized 100 times and the 
negative log-likelihood is stored for each iteration. Ideally, 
we expect an identical model fit from the jittered starting 
parameter values. 

We also examined the model sensitivity to our assumptions 
about M and catch bounds. A profile likelihood was 
constructed for a range of   M  a,y  ̓  s; that is,   M  a,y   = M + ΔM,   
where M is the SSM M model formulation and   ΔM ∈  
(   − 0.1, 0.35 )    . We also re-fit the model with upper catch 
bounds fixed at half the original model formulation upper 
bounds (M2) and with the upper catch bounds fixed (M3) 
at 1% of the reported bounds (i.e. “fixed landings”). Model 
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fit for the catch bounds was assessed using BIC and an 
examination of the retrospective plots.

Results 

For brevity, we provide a summary table of the exploratory 
process that describes the final model from each run (Table 
4); additionally, only the full exploratory process results 
from the best fitting run (S2) are given in Supplementary 
Materials  1 (SM1) and discussed. For exploratory 
step 1 (run S2), the model with an age-aggregation of 
7+ (   δ   +    q  s,a  

   = 0  for ages 8+) had the lowest AIC and this was 
selected as the age-aggregation for step 2 (see footnote 2 
for details and SM1 Table 1). Overall, the BIC for the fall 
model fits ranged between approximately 9970 and 9890, 
9940 and 9860 for the spring survey and 9970 and 9900 for 
the Spanish survey, indicating the grouping of the Spanish 
survey coefficient of variations (CVs) provided the least 
improvement in model fit (SM1 Tables 2–5). This is not 
surprising since the data for the Spanish survey do not 
cover the entire 3LNO region and are not as informative 
as the fall and spring surveys (see, e.g. Wheeland et al., 
2018 for more details). Rechecking the q age-aggregation 
in Step 3 confirmed that the age-aggregation of 7+ 
provided the lowest AIC and BIC with the new survey 
CV formulations (SM1 Table 6). The continuation ratio 
logit (crl) age exploratory runs in Step 4 had BICs that 
ranged from approximately 9600 to 9570, and the age 
aggregation of (5–6)(7–11)(12–14) was selected as the 
final crl sd age formulation (SM1 Table 7). For Steps 5a 
and 5b, the BICs ranged from approximately 9560 to 9480 
(SM1 Table 8). Rechecking the q’s in Step 6 confirmed 
that the age-aggregation of 7+ provided the lowest AIC 
and BIC with the new survey CV and crl sd formulations 
(SM1 Table 9). The AIC and BIC from Step 1 with a q 
age-aggregation of 7+ were 9690 and 9922 in comparison 
to the Step 6 run that were 9194 and 9481 respectively, 
indicating a substantial improvement in model fit. 

In all four exploratory model scenarios, q7+ was the best 
formulation for the survey catchabilities (q; Table 4). 
Overall, the survey CV formulations were similar for all 
four model formulations. For example, for the fall survey, 
models S1–S3 provided identical formulations, with S4 
(all AR(1) parameters fixed to zero) providing a better 
fit with an extra CV parameter for ages (2–4). Both the 
spring and Spanish CV formulations were similar for all 
four runs, providing the best fit with separate parameters 
at the oldest and youngest ages. In all formulations, the 
best fit for the crl sd parameters had a separate variance 
parameter from 1990–1999, with various formulations for 
the age groupings. For example, S1 provided the best fit 
with separate sd parameters for ages 5–7,14, and pooled 

for ages (8–13), whereas S4 pooled the sd parameters for 
ages (5–11) and (12–14). Overall, S2 had the lowest BIC, 
and had the best residual fits for both the surveys and the 
crls (see Supplementary Materials 2), and we selected this 
model as the best fitting model. For the final exploratory 
step (i.e., one run with  all  ϕ  F    parameters freely estimated 
and all   ϕ  C    fixed and one run with all AR(1) parameters 
freely estimated), the lowest BIC was for the model with 
all but the crl AR(1) parameters freely estimated (SSM; 
Table 5), and this was selected as the final state space 
model.

The SSM fit the data well with no patterns in the survey or 
continuation ratio logit residual plots (see Supplementary 
Materials  3). In 2017, recruitment, abundance and 
spawning stock biomass (SSB) were estimated near the 
lowest historical levels (Fig. 1). The model predicted 
landings were estimated within the upper and lower 
bounds, with the predicted landings closest to the upper 
bound in the early 80s, and again in 2010 (Fig. 2) and 
closest to the lower bound in the early 1990s. At ages 
1–4, the catchability pattern (Fig. 3) for the fall and spring 
surveys was lower for the Engels than the Campelen trawl. 
The differences were most pronounced for ages three and 
four, with the catchability estimates for the Campelen 
trawl almost twice as large as for the Engels trawl. For 
ages 1–5, the process errors (Fig. 4) were close to zero 
until the mid-nineties. Overall, there were no noticeable 
trends in the process errors at the older ages. Mohn’s 
rho for the full retrospective run (Fig. 5) was 0.30 for 
abundance and -0.19 for recruitment. In comparison to 
the most recent stock assessment model for Grand Bank 
American plaice (which we refer to as the VPA), the SSM 
had a lower Mohn’s rho for SSB at 0.43 compared to 0.69 
for the VPA (Fig. 6). Mohn’s rho for  aveF for the SSM 
was almost half the VPA Mohn’s rho, at -0.27 for the SSM 
and -0.45 for the VPA. 

The overall trends in SSB and aveF were similar for the 
SSM and the VPA (Fig. 7). Noticeable differences included 
the SSM predictions of historical SSB (i.e. years 1960–
1972) that were larger (but with high uncertainty) than the 
historical SSB predictions from the VPA. The VPA model 
also predicted a higher average fishing mortality rate in the 
early 1990s, at approximately 1.1, with the SSM prediction 
at approximately 0.80 for the same period. 

The self-simulation study lower 2.5% and upper 97.5% 
intervals for both SSB and aveF covered zero until the 
mid-1990s,(Fig. 8), indicating that the simulated samples 
produced estimates that were similar to the SSM estimates 
in those years. In the earliest years (1960–1972), the 
median of relative differences for aveF was mostly 
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Table 4: Best fitting models from exploratory process. For all models, parentheses represent pooled ages and ,., represent separate 
ages (e.g. 1,.,3(4–12) is a separate sd parameter for ages 1,2,3, and pooled for ages 4–12). (1990–1999) represents a 
separate crl sd parameter for the year block. S1 is run with   ϕ  s    freely estimated for each survey,  all  ϕ  F   = 0.90,   ϕ   C  A     = 0.9,   ϕ   C  Y     = 
0.75; S2 is run with   ϕ  s    freely estimated for each survey,  all  ϕ  F   = 0.90,   ϕ   C  A     = 0.9,   ϕ   C  Y     = 0; S3 is run with all   ϕ  s   ,   ϕ  F   ,    ϕ  C    = 0.50; 
S4 all   ϕ  s   ,   ϕ  F   ,    ϕ  C    = 0. AIC is the Akaike information criterion and BIC is the Bayesian information criterion.

S1 S2 S3 S4
nll

AIC

BIC

4548

9216

9519

4540

9194

9481

4878

9861

10123

5545

11196

11463

Optimal model formulation

q 7+ 7+ 7+ 7+
Fall cv 1(2–11)(12–15) 1(2–11)(12–15) 1(2–11)(12–15) 1,(2–4)(5–12)(13–15)
Spring cv 1,.,2(3–7)(8–13)(14–15) 1,.,2(3–13)(14–15) 1,.,2(3–13)(14–15) (1–2)(3–10)(11–14)15
Spanish cv 1(2–7)(8–15) 1,(2–7)(8–15) (1–5)(6–15) (1–5)(6–15)
Crl sd 5,.,7(8–13)(1990–1999) (5–6)(7–11)(12–14)  

(1990–1999)
5(6–14) (1990–1999) (5–11)(12–14) 

(1990–1999)

positive, with the converse for SSB. After 1990, there 
was a consistent positive bias in aveF and a negative 
bias in SSB, except in the final years, where aveF was 
underestimated and SSB overestimated. The boxplots 
of parameter estimates (Fig. 9) showed that the largest 
range were for estimated    μ   F  5_Pre1995     . TMB has an option 
(see Thorson and Kristensen, 2016) to reduce bias in 
nonlinear random effects models, and we implemented 
this method in a self-simulation run as a potential fix to 
the bias in our self-simulation study (see M4; Table 5). The 
bias across the entire time series for both SSB and aveF 
was much larger with the bias-correction turned on (see 
Supplementary Materials 4) than without. The jittered-
start test did not converge for 5% of the simulations, with 
100% of the converged models producing negative log-
likelihoods that were identical to the original formulation.

The minimum negative log-likelihood from the M profile 
likelihood plot was 4472, with an associated  Δ M  of 0.30 
(Fig. 10). For this model fit, the average fishing mortality 
rate in 2017 was estimated at 0.01 with SSB in 2017 at 
100.83 hundred thousand tons. Results from the sensitivity 
tests (Table 5) showed that the SSM had a lower BIC than 
the runs that halved the catch bounds (M2) and “fixed” 
the landings (M3). This is expected because more narrow 
catch bounds restrict the flexibility of the model. Mohn’s 
rho for both M1 and M2 for aveF were slightly larger than 
the Mohn’s rho from the SSM at -0.29 (Fig. 11). Similarly, 
Mohn’s rho for M1 and M2 for SSB were slightly larger 
than for the SSM at 0.39.

Discussion

Overall, our state-space model (SSM) that accounted for 
uncertainties in the landings data and allowed for process 
errors fit the data well, with no obvious patterns in the 
survey and continuation ratio logit residual plots (see 
Supplementary Materials 3). The retrospective patterns 
were reduced for spawning stock biomass (SSB) and 
greatly reduced for average fishing mortality for ages 
9–14 (aveF) compared to the most recent stock assessment 
model (VPA).

The M profile plot provided the best fit when M was 
increased by 0.30, suggesting that the values we used for 
M’s may be too low. Previous research found evidence 
that M’s during 1989 to 1996 (Morgan and Brodie, 2001) 
had increased to 0.53 and the current VPA model and our 
SSM include this increase. However, since the closure of 
the commercial fishery, estimates of total mortality rates 
have remained high for some periods (e.g. Fig. 7 for years 
2000–2006), and this may suggest that M is higher than 
0.20 in recent years. This is supported by preliminary 
work that suggests that M has increased since the mid-
1990s (COSEWIC, 2009; Morgan et al., 2011). The lack 
of recovery of the stock has largely been attributed to 
overfishing, however the mis-specification of M not only 
in the SSM but in historical assessment models could be 
over-estimating the relative impact of F. Thus, although 
a thorough study of M is beyond the scope of this paper, 
research that improves our understanding of M for this 
species should be of high priority as we may be fixing 
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Table 5.  Model estimates of variance parameters and some population parameters with percent (%) coefficient of variation. (O1 
is the final model from exploratory runs (S2) with  all  ϕ  F   = 0.9,   ϕ  

 C  A     = 0.9,   ϕ  
 C  Y     = 0, O2 is the final model from exploratory 

runs with all AR(1)parameters freely estimated. M2 is the final model with upper catch bounds set to half the SSM upper 
bounds, M3 is final model with fixed landings and M4 is the final model fit with the bias correction option in TMB turned 
on). AIC is the Akaike information criterion and BIC is the Bayesian information criterion. 

SSM O1 O2 M2 M3 M4

nll
AIC
BIC

4524 
9168
9470

4540
9194
9481

4521
9164
9471

4557
9234
9537

4781
9682
9984

4524
9168
9470

Est CV Est CV Est CV Est CV Est CV Est CV
  σ  F5   2.25 49 1.52 13 2.29 48 2.01 45 2.13 46 2.25 49
  σ  F 6   +    2.21 20 1.42 8 2.22 19 2.14 19 2.19 19 2.21 20
  σ  pe   0.22 6 0.22 6 0.22 6 0.23 6 0.23 6 0.22 6
  σ  R   0.71 15 0.70 14 0.71 15  0.71 14 0.71 14 0.71 15
  σ  C5−6   0.60 10 0.56 10 0.53 11 0.61 10 0.61 9 0.60 10
  σ  C7−11   0.33 9 0.29 11 0.28 11 0.33 9 0.33 9 0.33 9
  σ  C12−14   0.23 13 0.22 13 0.20 13 0.23 13 0.23 13 0.23 13
  σ  C90−99   0.95 9 0.98 9 0.76 12 0.96 9 0.96 9 0.95 9
  cv  Fall 1   0.66 20 0.67 19 0.67 20 0.66 20 0.66 20 0.66 20
  cv  Fall 2-11   0.31 8 0.31 8 0.31 8 0.31 8 0.31 8 0.31 8
  cv  Fall 12-15   0.45 10 0.45 10 0.45 10 0.45 10 0.45 10 0.45 10
  cv  Span. 1   1.55 33 1.56 33 1.56 33 1.54 32 1.54 32 1.55 33
  cv  Span. 2-7   0.81 12 0.81 12 0.81 12 0.81 12 0.81 12 0.81 12
  cv  Span. 8-15   0.46 11 0.46 11 0.46 11 0.46 11 0.47 11 0.46 11
  cv  Spr. 1   1.35 28 1.35 27 1.34 27 1.35 27 1.34 27 1.35 28
  cv  Spr. 2   0.70 18 0.70 17 0.70 17 0.70 18 0.70 17 0.70 18
  cv  Spr. 3-13   0.37 11 0.37 11 0.37 11 0.37 11 0.37 11 0.37 11
  cv  Spr. 14-15   0.48 13 0.49 13 0.48 13 0.47 13 0.47 13 0.48 13
  φ   F  A 6   +   

   0.95 2 - - 0.95 2 0.95 2 0.95 2 0.95 2
  φ  F5   0.97 4 - - 0.97 4 0.95 5 0.96 4 0.97 4
  φ   F  Y 6   +   

   0.98 1 - - 0.98 1 0.97 1 0.98 1 0.98 1
  φ  R   0.32 46 0.32 47 0.33 46 0.31 48 0.31 48 0.32 46

  φ  Fall   0.60 8 0.61 8 0.61 8 0.60 8 0.60 8 0.60 8

  φ  Span.   0.70 6 0.69 6 0.70 6 0.70 6 0.70 6 0.70 6

  φ  Spr.   0.87 3 0.87 3 0.87 3 0.87 3 0.87 3 0.87 3

  φ   C  A     - - - - 0.83 4 - - - - - -

  F  2017   0.11 20 0.11 19 0.11 19 0.09 20 0.08 18 0.09 28

  SSB  2017   10.13 16 9.80 16 9.89 16 9.83 17 9.58 17 11.51 18

  F  VPA   0.06 - - - - - - - - - - -

  SSB  VPA   18.24 - - - - - - - - - - -
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Fig. 1.  SSM estimated population abundance, spawning stock biomass (SSB), average fishing mortality rate (ages 9–14) and 
recruitment
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Fig. 2.  SSM estimated log catch numbers for ages 5–15+ (solid line), the shaded grey represents the region between the log 
lower catch bounds and the log upper catch bounds.
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Fig. 3.  Survey catchability patterns for the fall, spring and 
Spanish surveys with a separate catchability for two 
gear types (Engel and Campelen) for the spring and 
fall surveys for ages 1–4. Catchability for ages 7+ is 
fixed at the value for age 7. 

M within the model to be lower than is reasonable and 
subsequently over-stating the contribution of fishing 
mortality to the lack of recovery of the stock.

Mohn’s rho from the SSM retrospective analyses for 
both aveF and SSB were closer to zero than Mohn’s 
rho from the VPA retrospective analysis, which is a key 
improvement compared to the current assessment model. 
Including process error in the population dynamics model 
helped account for underlying time-varying population 
processes (e.g. M) that were not accounted for in the 
VPA, thereby reducing retrospective patterns. There is still 
evidence of slight retrospective patterns, and this may be 
caused by underlying spatial or time-varying processes 
that are mis-specified in the observation model since 
process errors can only account for misspecifications in 
the process equations. 

The estimate for survey catchability q is defined as the 
value required to scale swept-area abundance to the 
population abundance (see e.g. Dickson, 1993; Fraser 
et al., 2007). An estimate of q less than one implies that 
fewer fish are caught than occupied the area of the trawl, 
and a value greater than one implies that more fish are 
caught than occupied the area. Bryan et al. (2014) found 
evidence of herding behavior in over 90% of observed 
flatfish in the presence of survey trawls and this herding 
underestimates the width used in area swept calculations 
and can result in q estimates that are greater than one. 
Therefore, larger q estimates are not unrealistic for 
American plaice; however, the q estimates from the SSM 
are very large, with the maximum at 6.7. The maximum q 
estimate from the SSM is however much smaller than the 
maximum q estimated from the VPA at 13.62 (Table 26, 
Wheeland et al., 2018). Additional research is required 
to better understand why the stock assessment model 
estimates are so high. 

A difference to note between the SSM and the VPA is that 
the SSM assumes that the survey indices have a normal 
distribution with a constant coefficient of variation (CV) 
whereas the VPA assumes that the log of the survey indices 
have a lognormal distribution. The lognormal distribution 
does not allow for zeros in the survey data; however, this 
assumption may not be appropriate when there are many 
zeros in the data or when zeros are “true” zeros (i.e. no 
fish available to be caught). The assumption of normality 
with a constant CV avoids the problem of dropping zeros 
altogether. However, the normal distribution assumption 
supports negative indices which are infeasible. A solution 
to this problem is to use a truncated normal distribution 

in place of the normal distribution (e.g. Albertsen et al., 
2016). However, a normal distribution with constant CV 
is virtually identical to a truncated normal distribution 
when the CV is small. Consider two random variables 
(e.g. X and Y) that both have mean  μ  and a constant 
coefficient of variation,  τ = σ / μ . If   X~N (  μ, σ = τμ )     and   
Y~TN (  μ, σ = τμ; Y > 0 )     has a truncated normal distribution 
then their density functions differ by a multiplicative 
constant that only depends on  τ  and does not depend on  
μ . The constant is   ∫ 0  

∞  φ ( z − 1 _ τ  )   dz  where   φ  (  ∙ )     is the density 
function for   Z~N (  0,1 )    . The constant is close to 1 for  
τ < 0.5.  Hence, for our model, using the truncated normal 
distribution instead of the normal distribution will only 
affect estimation through differences in the weighting 

2 Note that the survey index from the NAFO assessment is in mil-
lions and the catch is in thousands; to get the qs on the same scale 
as the SSM we multiplied the NAFO q estimate by 1000
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Fig. 4. SSM estimated process errors for ages 1–14 for years 1960–2016.

of survey indices with different  τ ’s, especially when  
τ ≫ 0.5 . For our SSM we only have large  τ ’s for the 
Spanish survey and ages 1–2 for the Canadian surveys, 
thus in our case there should be little difference in model fit 
for the truncated normal vs the normal. However, although 
the approaches are theoretically similar, future research is 
needed to compare the performance of the three methods.

Fitting the age composition and landings data separately 
is in line with the integrated model philosophy, but our 
treatment of stock and catch weights is not. Ideally, 
each source of data should enter independently into the 
likelihood equation; however, the stock and catch weights 
at age data for American plaice are collected in complex 
length-stratified sampling designs and how to model these 
likelihoods is difficult and beyond the scope of this paper. 
In the future, state-space stock assessment models will 
ideally fit to the raw data (e.g., maturity at age, weights 
at age) and this will require complex stock assessment 
models that can account for the spatial nature of the stock 
assessment data. 

The self-simulation study lower 2.5% and upper 97.5% 
did not cover zero for years 2006–2010 and again in 

2013–2015. This bias was also present in models O1 
(fixing all crl and F AR(1) parameters) and O2 (freely 
estimating all AR(1) parameters; see Supplementary 
Materials 4). In a self-test simulation the model is 
specified exactly so stock size estimation bias cannot 
be the result of model misspecification, but rather it 
must be related to estimation bias and possibly related 
to nonlinear modelling of random effects. Our self-
simulation run that implemented the TMB bias correction 
option had larger bias than the SSM self-simulation run 
without (Supplementary Materials 4), which provides 
evidence that the bias is related to estimation bias. Also, 
preliminary research that fit the SSM with an increase 
in M (both across the entire time series, and another run 
increasing M only in the later years) did not produce the 
self-simulation bias in SSB and aveF in these later years 
(see Supplementary Materials 4). Hence, it seems that the 
bias is related to the particular settings of the model, and 
perhaps the magnitude of variance parameter estimates, 
and this requires additional research to better understand 
this type of bias. 

Although M profile plots are useful in providing a general 
picture of the role of the M assumption, it is also useful to 
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Fig. 5.  SSM retrospective estimates from 2011–2017 for total abundance, spawning stock biomass (SSB), average fishing 
mortality rates (ages 9–14) and recruitment for years 1960–2017. Mohn’s rho is given in the top right corner.
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examine which data sources are more informative about 
M, and Lee et al. (2011) suggested that informative length 
or age composition data is needed to reliably estimate 
M. Data-specific M profiles are commonly produced by 
more traditional stock assessment models without random 
effects and process error (e.g. SS3; Methot and Wetzel, 
2013) but in a state-space stock assessment model it is 
not straight-forward how to do this because the integrated 
log-likelihood cannot be split into a sum of log-likelihoods 
due to various data sources and other model assumptions. 
Further development of diagnostics designed to detect 
M misspecification (e.g. Cadigan and Farrell, 2002) also 
seems useful.

While overall trends in stock trajectory are similar, 
our new SSM is an improvement to the current stock 
assessment model that is used to inform the management 
of American plaice on the Grand Bank of Newfoundland 
as it allows for errors in the landings data and reduces the 
retrospective patterns. Additionally, the thoroughness of 
our model selection process has the potential to increase 
the confidence in the selected final model and thereby in 
the assessment output that is being provided to fisheries 
managers. Our results also suggest that the current values 
used for natural mortality rates may be too low as our 
diagnostic model fitting found the best model fit when M 
was increased by 0.30. This is an important note not only 
for American plaice, but for all stocks that are managed 
under the assumption of a fixed M. We suggest that M 
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Fig. 11. Retrospective plots for sensitivity runs. SSM is the final model formulation, M2 is with upper catch bounds set to half 
the SSM upper bounds, M3 is model with “fixed” landings. Mohn’s rho is given in the top right corner.

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

SSM

SS
B 

(0
00

’s
 to

ns
)

Av
eF

 (9
–1

4)

M5M2

25

20

15

10

5

0.5

0.4

0.3

0.2

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0

-03

-09

-06

-02

-0.

-0. 

25

20

15

10

5

25

20

15

10

5

-0.26 -0.29 -0.29

0.390.390.35

profile plots (and/or alternative diagnostics) should be 
routinely provided to facilitate a better understanding 
of model behavior for various assumptions about M. 
This can provide motivation for research into more 
realistic values of M for future stock assessment models. 
Overall, this model is a valuable first step in improving 
our understanding of the stock of American plaice on 
the Grand Bank of Newfoundland as the flexibility of 
state-space models are an ideal foundation to build more 
realistic models.
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Supplementary Materials 1

Step 1) Exploratory q runs (e.g. q5+ is model run with q deviations fixed at zero for ages 6+). In all cases, one cv 
parm per survey, crl std fixed at 0.20, AR1 crl age/year fixed at 0.9/0, AR1F fixed at 0.90. np is number of 
parameters, nll is the negative log-likelihood, AIC is the Akaike information criterion and BIC is the Bayesian 
information criterion.

q runs

q np nll AIC BIC

5+ 40 4817 9713 9915

6+ 43 4807 9700 9917

7+ 46 4799 9690 9922

8+ 49 4799 9696 9943

9+ 52 4799 9702 9964

10+ 55 4799 9708 9985

 11+ 58 4798 9713 10005

12+ 61 4793 9708 10016

13+ 64 4789 9706 10028

14+ 67 4780 9695 10032
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Step 2) For all runs, m_q’s for ages 8+ fixed at zero (i.e. q_8+=q_7). For all runs below parentheses represent pooled 
ages and ,., represent separate ages (e.g. 1,.,3(4–12) 13,.,15 is sep. sd parm for ages 1,2,3, 13,14,15 and pooled 
for ages (4–12)). crl sd fixed at 0.20, AR1 crl age/year fixed at 0.9/0, AR1F fixed at 0.90. np is the number of 
parameters, nll is the negative log-likelihood, AIC is the Akaike information criterion and BIC is the Bayesian 
information criterion.

Fall cv Spring cv Spanish cv

Model np nll AIC BIC nll AIC BIC nll AIC BIC

(1–15) 46 4799 9690 9922 4799 9690 9922 4799 9690 9922

1(2–15) 47 4795 9683 9920 4777 9648 9885 4795 9684 9921

1,.,2(3–15) 48 4795 9685 9927 4768 9632 9874 4794 9684 9926

1,.,3(4–15) 49 4795 9687 9934 4768 9634 9881 4791 9681 9928

1,.,4(5–15) 50 4795 9689 9941 4767 9635 9887 4789 9678 9929

1,.,5(6–15) 51 4793 9687 9944 4767 9636 9893 4783 9669 9926

1,.,6(7–15) 52 4793 9689 9951 4765 9634 9896 4783 9670 9932

1,.,7(8–15) 53 4791 9687 9954 4765 9636 9903 4778 9662 9929

1,.,8(9–15) 54 4789 9685 9957 4764 9637 9909 4778 9664 9936

1,.,9(10–15) 55 4784 9677 9955 4763 9637 9914 4778 9666 9943

1,.,10(11–15) 56 4780 9671 9953 4760 9633 9915 4778 9668 9950

1,.,11(12–15) 57 4774 9661 9948 4760 9635 9922 4778 9669 9957

1,.,12(13–15) 58 4772 9659 9952 4759 9634 9926 4778 9671 9964

1,.,13(14–15) 59 4771 9660 9958 4753 9623 9921 4778 9673 9971

1,.,15 60 4771 9662 9964 4753 9625 9928 4775 9670 9972

(1–15) 46 4799 9690 9922 4799 9690 9922 4799 9690 9922

(1–14)15 47 4799 9691 9928 4798 9691 9928 4799 9692 9929

(1–13)12,.,15 48 4797 9689 9931 4793 9682 9924 4797 9689 9931

(1–13)12,.,15 49 4786 9669 9916 4793 9683 9930 4794 9686 9933

(1–13)12,.,15 50 4783 9666 9917 4791 9681 9933 4793 9686 9938

(1–13)12,.,15 51 4783 9667 9924 4791 9683 9940 4790 9683 9940

(1–13)12,.,15 52 4782 9668 9930 4786 9677 9939 4788 9680 9942

(1–13)12,.,15 53 4780 9667 9934 4783 9673 9940 4785 9677 9944

(1–13)12,.,15 54 4780 9667 9939 4781 9669 9941 4781 9669 9941

(1–13)12,.,15 55 4777 9664 9942 4774 9658 9935 4780 9670 9947

(1–13)12,.,15 56 4777 9666 9948 4773 9657 9940 4777 9665 9947

(1–13)12,.,15 57 4775 9664 9951 4772 9659 9946 4776 9667 9954

(1–13)12,.,15 58 4775 9666 9958 4768 9652 9944 4776 9668 9960

(1–13)12,.,15 59 4774 9666 9963 4758 9634 9931 4776 9670 9967

(1–13)12,.,15 60 4771 9662 9964 4753 9625 9928 4775 9670 9972
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Step 2  Spring exploratory runs. For all runs, m_q’s for ages 8+ fixed at zero (i.e. q_8+=q_7). For all runs below parentheses represent 
pooled ages and ,., represent separate ages (e.g. 1,.,3(4–12) 13,.,15 is sep. CV parm for ages 1,2,3, 13,14,15 and pooled for ages 
(4–12)). crl sd fixed at 0.20, AR1 crl age/year fixed at 0.9/0, AR1F fixed at 0.90. np is the number of parameters, nll is the negative 
log-likelihood, AIC is the Akaike information criterion and BIC is the Bayesian information criterion.

Spring 1 Spring 2 Spring 3

Model np nll AIC BIC Model np nll AIC BIC Model np nll AIC BIC

1,.,2(3–15) 48 4768 9632 9874 1,.,2(3-4)(5-
13)(14-15) 50 4760 9620 9872

1,.,2(3–4)
(5–7)
(8–13)
(14–15)

51 4757 9617 9874

1,.,2(3–14)15 49 4767 9633 9880
1,.,2(3–5)
(6–13)
(14–15)

50 4760 9620 9871

1,.,2(3–5)
(6–7)
(8–13)
(14–15)

51 4758 9618 9875

1,.,2(3–
13)14,.,15 50 4760 9620 9872

1,.,2(3–6)
(7–13)
(14–15)

50 4757 9614 9866
1,.,2(3–6)
(7)(8–13)
(14–15)

51 4757 9616 9873

1,.,2(3–
12)13,.,15 51 4760 9622 9879

1,.,2(3–7)
(8–13)
(14–15)

50 4758 9616 9868

1,.,2(3–
11)12,.,15 52 4760 9623 9885

1,.,2(3–8)
(9–13)
(14–15)

50 4759 9618 9870

1,.,2(3–
10)11,.,15 53 4759 9624 9891

1,.,2(3–9)
(10–13)
(14–15)

50 4760 9619 9871

1,.,2(3–
9)10,.,15 54 4758 9625 9897

1,.,2(3–10)
(11–13)
(14–15)

50 4760 9619 9871

1,.,2(3–
8)9,.,15 55 4757 9625 9902

1,.,2(3–11)
(12–13)
(14–15)

50 4760 9620 9872

1,.,2(3–
7)8,.,15 56 4756 9624 9906 1,.,2(3–12)

(13)(14–15) 50 4760 9620 9872

1,.,2(3–
6)7,.,15 57 4754 9623 9910 1,.,2(3–13)

(14–15) 49 4760 9618 9865

1,.,2(3–
5)6,.,15 58 4754 9624 9917
1,.,2(3–
4)5,.,15 59 4753 9623 9921

1,.,15 60 4753 9625 9928

Spring 4

Model np nll AIC BIC

1,.,2(3–7)
(8–9)(10–13)
(14–15)

51 4758 9618  9875

1,.,2(3–7)(8–
10)(11–13)
(14–15)

51 4756 9615  9872

1,.,2(3–7)(8–
11)(12–13)
(14–15)

51 4758 9618 9875

1,.,2(3–7)
(8–12)(13)
(14–15)

51 4758 9618 9875

cont'd)
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Step 3) Check qs with new survey cvs; Fall grouped 1(2-11)(12–15); Spring grouped 1,2,(3–13)(14–15); Spanish 
grouped 1(2-7)(8-15). In all cases, crl sd fixed at 0.20, AR1 age for all surveys fixed at 0.90. crl sd fixed at 
0.20, AR1 crl age/year fixed at 0.9/0, AR1F fixed at 0.90. np is the number of parameters, nll is the negative 
log-likelihood, AIC is the Akaike information criterion and BIC is the Bayesian information criterion.

q runs

q np nll AIC BIC

5+ 40 4817 9713 9915

6+ 43 4807 9700 9917

7+ 46 4799 9690 9922

8+ 49 4799 9696 9943

9+ 52 4799 9702 9964

10+ 55 4799 9708 9985

  11+ 58 4798 9713 10005

12+ 61 4793 9708 10016

13+ 64 4789 9706 10028

14+ 67 4780 9695 10032

q runs 2

q np nll AIC BIC

5+ 47 4753 9599 9836

6+ 50 4736 9571 9823

7+ 53 4718 9543 9810

8+ 56 4718 9548 9831

9+ 59 4718 9554 9851

10+ 62 4718 9560 9872

  11+ 65 4718 9565 9893

12+ 68 4715 9567 9909

13+ 71 4713 9567 9925

14+ 74 4707 9562 9935
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Step 5a/b)  crl exploratory runs by year. For all runs, m_q’s for ages 8+ fixed at zero (i.e. q_8+=q_7), Fall grouped 
1(2–11)(12–15); Spring grouped 1,2,(3–7)(8–13)(14–15); Spanish grouped 1(2–7)(8–15). AR1 crl age/year 
fixed at 0.9/0, AR1 F fixed at 0.90. np is number of parameters. crl ages grouped (5-6)(7-11)(12-14). np is 
the number of parameters, nll is the negative log-likelihood, AIC is the Akaike information criterion and 
BIC is the Bayesian information criterion.

Crl 1 split

Model np nll AIC BIC

PA90 59 4572 9262 9559

PA91 59 4573 9264 9561

PA92 59 4573 9264 9561

PA93 59 4571 9260 9557

PA94 59 4573 9264 9561

PA95 59 4583 9285 9582

  PA96 59 4579 9276 9573

PA97 59 4568 9253 9550

PA98 59 4568 9255 9552

PA99 59 4568 9253 9550

Crl 2 block

P90 57 4540 9194 9481

P91 57 4552 9218 9505

P92 57 4556 9227 9514

P93 57 4559 9232 9520

P94 57 4560 9235 9522

P95 57 4565 9243 9531

P96 57 4593 9300 9587

P97 57 4594 9303 9590

P98 57 4587 9288 9575

P99 57 4583 9280 9568
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Step 6)  Check qs with new crl sds; crl ages are pooled for ages (5–6)(7–11)(12–14), with a sep sd parm pre/post 1993; 
Fall grouped 1(2–11)(12–15); Spring grouped 1,2,(3–13)(14–15); Spanish grouped 1(2-7)(8–15) AR1 crl age/
year fixed at 0.9/0, AR1F fixed at 0.90. np is the number of parameters, nll is the negative log-likelihood, AIC 
is the Akaike information criterion and BIC is the Bayesian information criterion.

q runs

q np nll AIC BIC

5+ 40 4817 9713 9915

6+ 43 4807 9700 9917

7+ 46 4799 9690 9922

8+ 49 4799 9696 9943

9+ 52 4799 9702 9964

10+ 55 4799 9708 9985

11+ 58 4798 9713 10005

12+ 61 4793 9708 10016

13+ 64 4789 9706 10028

14+ 67 4780 9695 10032
 

q runs 2

q np nll AIC BIC

5+ 47 4753 9599 9836

6+ 50 4736 9571 9823

7+ 53 4718 9543 9810

8+ 56 4718 9548 9831

9+ 59 4718 9554 9851

10+ 62 4718 9560 9872

11+ 65 4718 9565 9893

12+ 68 4715 9567 9909

13+ 71 4713 9567 9925

14+ 74 4707 9562 9935
 

q runs 3

q np nll AIC BIC

5+ 51 4572 9246 9503

6+ 54 4553 9213 9485

7+ 57 4540 9194 9481

8+ 60 4540 9199 9502

9+ 63 4539 9205 9522

10+ 66 4539 9211 9543

11+ 69 4539 9216 9564

12+ 72 4539 9221 9584

13+ 75 4539 9227 9605

14+ 78 4535 9227 9620
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Survey index bubble plots

S1           

 

S2
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S3                  

  

S4
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Crl fits
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Crl fits
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Crl residuals
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Crl bubble plot residuals
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Supplementary Materials 3

Final model fit

Model fit

Model nparms nll AIC BIC conv maxabs 
gr

60 4524 9168 9470 rel 0.000
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Estimated landings
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Estimated population processes
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Survey fits

Fall
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Spring
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Spanish
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Crl fits
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Fishing mortality rates
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Fishing mortality deviations
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Process error
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Parameter estimates
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Catchability estimates

Fall

Spanish
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Spring

m_q estimates

Fall
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CRL residuals
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Pearson CRL residuals



PERREAULT et al.: A state-space stock assessment model for American plaice on the Grand Bank of Newfoundland 99

Four panel crl residuals
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Survey residuals

Standardized survey residuals (red = positive, blue= negative)

Fall
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Four panel survey residuals
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Self-simulation runs

SSM

O1

Supplementary Materials 4
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O2

SSM with Ma,y = M + 0.20
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SSM with Ma,y = M + 0.33 for years 1989–2017; i.e. Morgan and Brodie increase for rest of time series

M4 (with TMB bias correction on)
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