
Introduction

Atlantic sea scallops (Placopecten Magellanicus) support 
a highly valuable fishery in the United States. However, 
the scallop fishery within Maine state waters is relatively 
depleted. The fishery there bottomed out in 2005 when 
only 33 000 lb was taken, about 1% of what was landed 
in the early 1990s (Kelly 2012). However, recent years 
have shown an increasing trend in scallop abundance, 
with over 800 000 lb landed in 2018, allowing for an 
opportunity to establish a persistent, valuable fishery 
through research-informed management and conservation 
efforts (Kelly, 2012).

The distribution and abundance of species are central 
concepts to ecological research and vital components 
of conservation planning and fisheries management 
(Franklin, 2010). Species distributions are influenced 
by many interacting biotic and abiotic processes that 
can manifest as complex occurrence-environment 
relationships (Boulangeat et al., 2012;  Merow et al., 

2014). Thus, a key step in understanding the biogeography 
of species is identifying environmental factors that 
regulate the distribution of a species (Merow et al., 
2014). Like most benthic species, scallop abundance 
and distribution are influenced by an array of interacting 
variables such as depth, current, temperature, and salinity 
(Stokesbury and Himmelman 1995, Hart and Chute 2004).

Throughout their geographic range, scallops occur mainly 
at depths of 15 to 110 m, but can be found as shallow as 
2 m in the northern part of its range (Naidu and Anderson 
1984, Carsen et al., 1995). Temperature is an important 
environmental factor influencing growth rates of this 
species with adult scallops showing optimal growth at 
temperature between 10–15°C and temperatures above 
21°C being lethal (Stewart and Arnold 1994). This species 
prefers full strength seawater (~35 ppt), with salinities of 
16.5 ppt or lower being lethal (Stewart and Arnold, 1994). 
Scallops are usually found in environments with strong 
currents (Hart and Chute, 2004), and flow velocity has 
been shown to be a key factor controlling waste removal, 

J. Northw. Atl. Fish. Sci., Vol. 50: 37–50 Publication (Upload) date: 14 May 2019

Development of a climate-niche model to evaluate spatiotemporal trends in 
Placopecten magellanicus distribution in the Gulf of Maine, USA

Michael P. Torre, Kisei R. Tanaka, and Yong Chen
University of Maine, School of Marine Sciences,Orono, Maine, 04469, USA  

Michael.Torre@Maine.edu
Corresponding Author: Michael P. Torre

Torre, M.P., K.R. Tanaka, and Y. Chen. 2019. Development of a climate-niche model to evaluate 
spatiotemporal trends in Placopecten magellanicus distribution in the Gulf of Maine, USA. 
J. Northw. Atl. Fish. Sci., 50: 37–50. doi:10.2960/J.v50.m721

Abstract

We developed a climate-niche species distribution model to evaluate spatiotemporal trends in Atlantic 
sea scallop (Placopecten magellanicus) along the coastal waters of the Gulf of Maine. We used a 
Tweedie-generalized additive model (GAM) to quantify the relationships between scallop abundance 
and key environmental variables. A boosted regression tree was used to identify significant interactions 
among environmental variables to integrate within the Tweedie GAM and a regional circulation model 
was incorporated with the Tweedie GAM to hindcast projections of scallop distribution and assess 
the impacts of environmental change on this species. Additionally, we evaluate two common model 
fitting and variable selection methods for GAMs to ensure high model performance. A classic backward 
variable selection procedure was compared to penalized thin plate regression splines. Projections from 
the climate-niche species distribution model show higher scallop density along inshore areas relative 
to those farther offshore. An increasing temporal trend in scallop density was observed along inshore 
areas and a decreasing temporal trend was observed in areas farther offshore. Additionally, we found 
that the GAM incorporating thin plate regression splines outperformed the widely used backwards 
stepwise procedure. This modeling framework will help to inform adaptive management strategies 
for the scallop fishery within the context of a changing Gulf of Maine ecosystem.
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oxygen uptake, feeding, and growth rates (Stewart and 
Arnold, 1994; Shumway and Parsons, 2006). Optimal 
growth for this species occurs near 0.1 m s-1 (Wildish and 
Saulnier, 1992) and feeding inhibition has been observed 
to start at ~0.25 m s-1 (Pilditch and Grant, 1999). While 
the influence of key environmental variables on bivalve 
ecology is apparent, quantitative evaluations of scallop-
environment relationships and spatiotemporal trends of 
distribution are uncommon (Shumway and Parsons, 2006; 
Mendo et al., 2014).

Water temperatures within the Gulf of Maine (GoM) 
have increased over the past 35 years at an average 
rate of 0.026°C yr -1 (Mills et al., 2013; Pershing et al., 
2015). Rapidly increasing temperatures are changing 
the distribution of numerous marine species (Overholtz 
et al., 2011, Howell and Auster, 2012, Hollowed et al., 
2013), with many fish stocks undergoing a poleward 
shift in their center of biomass and/or an increase in 
depth (Nye et al., 2009). Scallop distribution has also 
been shown to be impacted by climatic variability (Frank 
et al., 1990, Kurihara 2008). Dickie (1955) and Caddy 
(1979) demonstrated that higher temperatures in the 
Bay of Fundy were correlated with changes in scallop 
abundance. Additionally, climactic changes may alter 
larval development as well as the survival of juvenile and 
adult scallops (Dickie, 1955; Caddy, 1979). Considering 
a changing GoM ecosystem (Mills et al., 2013; Pershing 
et al., 2015), it is important to document the importance 
and potential synergistic effects of climate forcing on the 
dynamics of species abundance and distribution.

In this study, we use data describing the distribution of 
scallops in the GoM to develop a climate-niche species 
distribution model (SDM). This SDM predicts the spatial 
distribution of scallops within the inshore Gulf of Maine 
across unsampled areas and hindcasts spatiotemporal 
changes in the distribution of scallops from 2005–2013 to 
evaluate the effects of shifting environmental conditions 
on this species. We used Tweedie-generalized additive 
models (GAMs) to quantify the relationships between 
scallop abundance and key environmental variables. 
Additionally, we evaluate two prevalent model fitting 
and variable selection methods for GAMs to ensure high 
model performance. A classic backward variable selection 
procedure was compared to penalized thin plate regression 
splines following Wood (2003, 2006). This modeling 
framework will help to inform adaptive management 
strategies for the scallop fishery within the context of a 
changing GoM ecosystem.

Materials and Methods

Study Area and survey data.

Dredge-based fishery-independent scallop surveys 
conducted over 15 years, from 2005 to 2017, by the 
Maine Department of Marine Resources were used for 
this modeling effort (DMR: Kelly, 2012; Fig. 1). Survey 
coverage extends out to 3 nm from shore from southern 
Maine to the Maine-Canadian border, USA (Fig. 1). This 
dataset comprised two annual random systematic surveys, 
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Fig. 1. Spatial distribution of natural log standardized scallop (Placopecten magellanicus) density from 
the Maine Department of Marine Resources Scallop Dredge Survey from 2005–2017. The study 
area encompasses nearshore waters of Gulf of Maine from Casco Bay to the Maine-Canada 
border.
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one in the spring survey covering alternating portions of 
inshore Maine waters and one in the fall covering select 
coastal areas. The gear used for both surveys is an unlined, 
7 ft. New Bedford style drag with 2 in rings, 1.75 in 
head bale, 3.5 in twine top, 10 in pressure plate and rock 
chains. Since scallops <65 mm in shell height were not 
efficiently sampled with the 2 in rings (Kelly 2012), these 
were excluded from all analyses. Tows were conducted at 
3.5–4 knots and lasted ~ 2.5 minutes. A total of 4 321 tows 
were made yielding 507 911 total observed scallops in this 
dataset (Fig. 2). All tows from the survey were included 
within the modeling framework. Scallop abundance from 
each tow was standardized to catch-per-unit-effort (CPUE) 
over a 2.5-minute tow.

The GoM is characterized by a mixture of oceanic 
influences directly affected by the Labrador Current, 
the Gulf Stream, and the freshwater discharge from the 
St. Lawrence River (Tremblay 1997; Drinkwater and 
Gilbert, 2004). As such, water temperature follows a 
gradient moving up the coast and offshore. Within the 
study area, scallops were found where maximum yearly 
temperature ranged from 8°C in deeper areas to 16°C in 
shallow areas. Salinity ranged from 26 ppt in areas subject 
to freshwater inputs to full seawater (35 ppt) in offshore 
locations. The Maine covered depths to ~110 m, since 
scallops are uncommonly found outside of this depth 
range (Hart and Chute, 2004), with the majority of tows 
occurring in <60 m. 

Environmental data

Because the DMR surveys did not measure temperature, 
salinity, or current velocity, the Finite-Volume Community 
Ocean Model (FVCOM), a regional ocean circulation 
model developed by the University of Massachusetts-
Dartmouth and the Woods Hole Oceanographic Institution 
(Chen et al., 2006) was used to simulate monthly estimates 
of bottom temperature, salinity, and current velocity from 
2005 to 2013. It has a horizontal resolution ranging from 
0.02 km to 10 km and captures complex and irregular 
coastal geometry, making it suitable for physical and 
biological studies in coastal regions and estuaries (Chen 
et al., 2011). FVCOM predictions were matched to survey 
tows from the nearest neighboring FVCOM node during 
time of sampling (Fig. 3). Horizontal current velocity was 
calculated to approximate the magnitude of water flow at 
a given FVCOM node. Current velocity C was estimated 
at station i, and year y from FVCOM predictions using 
the following equation: 

where C is the magnitude of the predicted current velocity 
and u and y are the x and y vector components of the 
velocity(Chen et al., 2011; Torre et al., 2018). Bathymetry 
data were obtained from the U.S. Coastal Relief Model 
(CRM) (National Geophysical Data Center, 1999).
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Fig. 2. Frequency plots of scallop (Placopecten magellanicus) density (left) and size frequency (right) in the density data from 

the Maine Department of Marine Resources Scallop Dredge Survey.
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Generalized additive models

A generalized additive model (GAM) was used to make 
spatiotemporal predictions of scallop distribution in the 
inshore GoM (Fig. 3). Conceptually, GAMs are generalized 
linear models with a linear predictor upon which smooth 
functions are applied to covariates (Guisan et al., 2002, 
Marra and Wood, 2011). The strength of GAMs lie in 
their ability to handle, in a multivariate regression setting, 
non-linear and non-monotonic relationships between 
the response and covariates that arise often in nature 
(Guisan et al., 2002). Resulting from their ability to deal 
with a variety of distributions that occur in ecological 
data, the use of GAMs has been extensively applied to 
species distribution modeling efforts (Guisan et al., 2002, 
Sagarese et al., 2014, Young and Carr, 2015).

Terms included within the full model were selected 
according to boosted regression tree (BRT) analysis (Elith 
et al., 2008), and bivariate interaction terms were also 
identified and included based on this analysis. BRT models 

were used to determine the relative importance of each 
environmental variable with relation to scallop density. 
Bivariate terms were included when interaction between 
two variables in the BRT was considered high (>100).

Formulation of the GAM for the estimate of scallop CPUE 
can be expressed as follows:

where g(.) is a log link function between the response 
variable, n, and each additive predictor, xj; α is the 
intercept term; sj are smooth functions of the predictors, 
represented by either cubic splines, that are linear or 
nonlinear, or thin plate regression splines with a penalty; 
ԑ is the residual error (Wood, 2003; Marra and Wood,  
2011). Predictors comprised either a single variable or 
interacting pair of variables that are thought to relate to 
scallop distribution (Table 1). Smooth terms were used in 

Response variable
Maine DMR Scallop Dredge

Survey (2006–2007)

P. Magellanicus catch density

Environmental predictors

Button temperature (C)
Bottom salinity (ppt)
Current speed (m/s)

Depth (m)

Identify potential covariates

Boosted regression tree (BRT)

Model building

Generalized Additive Model (GAM)
using Tweedie distribution

Model fitting and variable selection
Stepwise backward selection
Thin plate regression splines

Model evaluation
AIC & BIC

Cross validation

Finite Volume Community
Ocean Model (FVCOM)

Coastal Relief Model
(CMR)

Visualization of spatiotemporal
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Fig. 3. Schematic diagram of the modeling framework implemented in this study. All data exploration 
and modeling procedures were conducted within the R programming environment.
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conjunction with a pair of variables to model interactions. 
Where cubic splines were used, the maximum value for 
degrees of freedom were set at 5 for univariate functions 
and 30 for bivariate functions. These values were chosen 
as a balance between over generalization and over-
fitting as suggested in the literature (Zuur et al., 2009, 
Sagarese et al., 2014). Statistical analyses were carried 
out within the R programming environment (R Core Team 
Development 2016). Boosted regression tree analysis was 
done using the dismo package (Hijmans et al., 2017) and 
GAMs were fitted using the mgcv package (Wood, 2011).

A Tweedie distribution was used as the likelihood to 
measure GAM fit to account for a high proportion 
of zero-catch tows and skewness in the CPUE data 
(Fig. 2). The Tweedie distribution handles zero and 
positive values simultaneously, and works as a Poisson-
Gamma compound distribution when the power parameter 
p is greater than 1 but less than 2 (Li et al., 2011; Wood 
2011). This distribution has been shown to outperform 
other methods for dealing with zero inflated data (Shono, 
2008; Li et al., 2011). Tweedie GAMs were fitted through 
a process of optimizing its profile likelihood. Power 
parameter p was estimated with the range of 1 <p <2 
during the fitting process (Shono, 2008; Wood, 2011; 
Tanaka et al., in review).

Final GAMs were used to predict the density of scallops at 
every FVCOM node in the study area during 2005–2013. 
Predictive fields were interpolated using ordinary kriging 
with a semivariogram function to produce continuous 
model outputs (Bailey and Gatrell, 1995, R Core Team 
Development 2016). Predicted density of scallops was 
aggregated temporally by obtaining the median density 
value over the 8-year study period at each FVCOM node. 
Median values were used as opposed to means because 
they provide a clearer interpretation of the tendency over 
the study period, i.e. not susceptible to skewing in rare 
cases of outliers. Linear regression was performed at every 

FVCOM node and the derived slope (β) coefficient was 
used to evaluate temporal change in predicted density of 
scallops over the 8-year study period.

Model selection

In this modeling framework, two methods of fitting and 
variable selection were performed to assess their relative 
performance (Fig. 3). Here, performance signifies both 
a balance between goodness of fit and parsimony, and 
maximizing prediction accuracy while maintaining model 
interpretability (Marra and Wood, 2011). The first method 
of model fitting and variable selection was a conventional 
backwards stepwise procedure (BSP), where terms were 
removed iteratively from an initial full model using AIC 
(Akaike, 1974). This method is widely used in ecological 
modeling due to its simplicity and demonstrated 
effectiveness (Burnham and Anderson, 2002; Marra and 
Wood 2011). During each step, the variable with the lowest 
p-value was removed and AIC was recalculated for the 
reduced model. This iterative process was repeated as long 
as variable removal lowered AIC.

The second method of model fitting and variable selection 
was a shrinkage approach where each variable in the 
full model was fitted with a thin plate regression spline 
including a thin plate spline penalty (TPRS). These are 
low rank isotropic smoothers of covariates that include a 
modification to the smoothing penalty, so that whole terms 
can be reduced to zero, effectively removing superfluous 
variables (Wood 2003; Marra and Wood, 2011). Unlike 
the stepwise algorithm from BSP, this procedure is carried 
out in a single step.

Model Validation

The performance of final models from BSP and TPRS 
was evaluated using multiple evaluation criteria (Fig. 3). 

Table 1.  Variables used in generalized additive modeling of scallop (Placopecten magellanicus) density in the nearshore Gulf 
of Maine.

Variables Description
Longitude (°) Measurement of longitude of tow starting location
Latitude (°) Measurement of latitude of tow starting location
Bottom Temperature (°C) bottom temperature at tow location (imported from FVCOM)
Bottom Salinity (ppt) bottom salinity at tow location (imported from FVCOM
Current Velocity (m s-1) current velocity at tow location (imported from FVCOM)
Depth (m) depth at tow location

FVCOM: Finite Volume Community Ocean Model
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Two traditional model evaluation criteria, AIC and BIC 
(Burnham and Anderson 2002, Wood 2006), were used 
to compare relative performance of BSP and TPRS. AIC 
and BIC are widely used as model evaluation criteria. AIC 
is an estimator of the relative quality of statistical models 
based on goodness of fit. BIC is closely related to AIC, 
but has been shown to penalize complexity to a higher 
degree than AIC (Hastie, 2009).

A cross-validation study was implemented to evaluate 
predictive performance of final GAMs, where a randomly 
selected subset, training data, (80% of all data) was used 
for GAM development, while the remaining 20%, testing 
data was used for the evaluation of performance (Smith 
1994; Wood 2006; Zuur et al., 2007; Tanaka and Chen, 
2015, 2016). The GAM-predicted CPUE values based 
on training data were compared against observed CPUE 
values, based on testing data, and linear regression analysis 
was performed to evaluate the predictive performance of 
the GAM. The cross-validation procedure was repeated 
100 times using random data selection in each round to 
obtain 100 sets of linear regression parameters (intercept, 
slope, and R2). Good model performance was indicated 
by an intercept parameter close to zero, a slope close to 
one and an R2 close to one.

Results

GAM performance

Full GAMs included nine terms in total (Tables 2 and 3). 
Single terms included latitude (°), longitude (°), depth (m), 
bottom temperature (°C), bottom salinity (ppt), and current 
velocity (m/s). BRT analysis identified strong two-way 
interactions (value >100) between three pairs of variables, 
depth-latitude (163.13), salinity-temperature (112.79), and 
longitude-latitude (125.10) (Table 2). All three of these 
two-dimensional terms were significant and included in 
both full and final GAMs (Table 3, Fig. 4 and 5).

Model fitting and variable selection using BSP went 
through two iterations of term removal. Depth was 
removed during the first round and bottom temperature 
was removed during the second round. Deviance 
explained for the parsimonious BSP model was 48.60 %. 
Model fitting and variable selection using TPRS, similarly, 
penalized depth to a high degree (edf = 0.05, Table 3, 
Fig. 4) to where it had a negligible effect on predictions. 
The effect of both bottom temperature (edf = 0.91) and 
longitude (edf = 0.94) on scallop density were reduced 
to almost linear relationships (Table 3, Fig. 4). Deviance 
explained for the parsimonious TPRS model was 49.70% 
(Table 3).

While overall model performance was similar between the 
parsimonious BSP and TPRS GAMs, TPRS model slightly 
outperformed BSP model across all evaluation criteria 
(Table 3, Fig. 6). AIC and BIC were lower in the TPRS 
model (AIC = 42 274.97, BIC = 42 888.10), suggesting 
its superior performance over the BSP model (Table 3). 
Assessed by cross validation, the TPRS model showed 
higher predictive performance (α = -0.60, β = 1.02, R2 

= 0.42) compared to the BSP model (α = -2.278, β = 
1.04, R2 = 0.41; Fig. 6). Therefore, the TPRS model was 
determined to be more appropriate than the BSP model 
in this study.

Model predictions.

The parsimonious TPRS GAM was used to map model 
predictions over the inshore GoM. Model results show 
that nonlinear relationships commonly exist between 
environmental variables and scallop density; however, 
both bottom temperature and longitude were reduced to 
decreasing, near-linear relationships by the TPRS model. 
The response curves for scallop density as a function of 
bottom salinity and current velocity were dome shaped, 
with salinity peaking between 27–32 ppt and current 
velocity peaking between 0.10–0.17 (m/s). Because depth 

Table 2.  Results from boosted regression tree analysis. Higher values are associated with stronger interaction 
between variables. Variable pairs with a value > 100 were considered to have a “strong” interaction and 
included as terms in the generalized additive models.

Longitude Latitude Bottom 
Temperature

Bottom 
Salinity

Current 
Velocity Depth

Longitude 0 125.1 13.33 46.73 5.34 30.65
Latitude 0 0 60.15 12.93 8.55 163.13
Bottom Temperature 0 0 0 112.79 24.78 44.98
Bottom Salinity 0 0 0 0 49.63 27.83
Current Velocity 0 0 0 0 0 4.77
Depth 0 0 0 0 0 0
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was penalized out of the TPRS model, this response curve 
was flat.

Interactions included in this model (latitude-longitude, 
latitude-depth, bottom temperature-bottom salinity), 
identified using BRT analysis, were included to capture 
the common effect of single environmental variables 
operating within a more complex composite of factors 
directly controlling species distribution (Austin, 2007, 
Araujo and Peterson, 2012). For example, salinity in this 
model acts as a proxy for broad spatial patterns in scallop 
distribution which is shown by the strong interaction 
between salinity and temperature detected within the 
model, and likely corresponds to the origin of water mass 
existing in a given area (MacDonald and Thompson, 
1985a, 1985b; Macdonald et al., 1987).

Predicted scallop density was higher (>20 scallops per m2), 
in general, along inshore areas relative to offshore areas 
(<5 scallops per m2) (Fig. 7). Select estuaries along the 
Maine coast show significantly higher (>60 scallops per 
m2) predicted scallop density relative to other inshore 
areas. In particular, the Cobscook Bay area shows high 
predicted density (>100 scallops per m2) relative to 
surrounding areas (Fig. 7). Additionally, offshore waters 
in Western Maine show slightly higher predicted density 
(10–20 scallops per m2) relative to Eastern Maine (<10 
scallops per m2) (Fig. 7). Over the 8-year study, predicted 

density shows a strong increasing trend along inshore areas 
and a decreasing trend in offshore areas (Fig. 8). Cobscook 
Bay and Penobscot Bay show stronger increasing trends 
relative to other inshore areas and offshore waters in 
Western Maine show a stronger decreasing trend in 
predicted density relative to Eastern Maine.

Discussion

Decision-making associated with conservation planning 
and fisheries management should use as much information 
and knowledge as possible to maximize the benefits of 
management actions (De Ornellas et al., 2011). The model 
developed in our study was designed to use an existing 
dataset describing both the abundance and distribution of 
Atlantic sea scallops to develop a climate-niche species 
distribution model (SDM). Our Tweedie GAM approach 
produced high quality predictions of abundance for 
scallops. Model outputs agree generally with consensus of 
the distribution of scallops along coastal Maine according 
to fishermen knowledge, the distribution of fishing effort 
in the area, as well as landings information (not able to 
be shown here due to confidentiality agreements). Thus, 
we consider this modeling effort a successful approach to 
predict the distribution of scallops across unsampled areas.

This study provides a regional projection in the distribution 
of scallops within the inshore GoM and hindcasts these 
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projections back eight years. A dominant spatial trend 
made apparent by this climate-niche SDM is a decline 
in predicted density moving from inshore to offshore 
locations. This finding corresponds with habitat value 
for scallops being higher among inshore areas relative 
to offshore areas likely attributed to deteriorating food 
availability moving offshore (Torre et al., 2018). This is 
thought to represent a natural gradient of habitat quality 
(Sarro and Stokesbury, 2009).

An increasing temporal trend in climate-driven scallop 
density was observed for inshore areas with a decreasing 
trend in offshore areas (Fig. 8). Any change in density 
over time results from changes in dynamic environmental 
variables (bottom temperature, bottom salinity, and 
current velocity), suggesting that the composite of these 
three factors has changed favorably regarding scallop 
abundance from 2005–2013 in inshore areas and has 
changed unfavorably in offshore areas. These trends 
assume that scallop-environment relationships have 
remained consistent over the study period (Pearson and 
Dawson, 2003, Crisp et al., 2009, Catullo et al., 2015). 
This general temporal trend is reflected in a recent study 

which depicts the spatiotemporal distribution of available 
scallop habitat in the GoM using a bioclimate envelope 
model (Torre et al., 2018).

The TPRS GAM, incorporating a Tweedie distribution 
for zero-inflated catch data was shown to be a useful 
prediction tool according to cross validation. The response 
curves in general agreed with known information about 
drivers of scallop distribution (Naidu and Anderson, 1984; 
Thouzeau et al., 1991; Wildish and Kristmason, 1993; 
Stewart and Arnold, 1994; Pilditch and Grant, 1999; Hart 
and Chute, 2004; Torre et al., 2018).

Depth in the case of this modeling framework was not 
significant, and so was penalized out of the TPRS model. 
In other studies, scallops have been shown to grow more 
slowly (MacDonald and Thompson, 1985; Thouzeau et al., 
1991) and occur at reduced densities (Schick et al., 1988; 
Shumway and Parsons, 2006) at deeper depths; however, 
the example given here is comprised of areas that were 
surveyed in less than 100 m, as opposed to scallops 
occupying deep areas in other studies (up to 170 m in 
the case of Schick et al., 1988). Since, within the current 
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Table 3.  Generalized additive models for scallop (Placopecten magellanicus) density in the nearshore Gulf of Maine with deviance 
explained by the model (Dev. Exp.), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The 
terms in models are latitude (La), longitude (Lo), depth (De), bottom temperature (Bt), bottom salinity (BS), and current 
velocity (Cv). Edf = estimated degrees of freedom. Greyed out terms are variables that were removed from the model. 
*Denotes the highest performing model from each category (thin plate regression spline and backwards stepwise). 

Model edf
Dev.  

explained AIC BIC

Thin plate regression spline w/ penalty
*s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + s(Cv) 

+s(La*Lo) + s(Bt*Bs) + s(De*La) 
4.84, 0.94, 0.05, 0.91, 7.92, 5.03, 

24.21, 21.11, 20.16
49.70% 42 274.97 42 888.10

Backwards stepwise 
 s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + s(Cv) 

+s(La*Lo) + s(Bt*Bs) + s(De*La) 
2.64, 1.00, 1.00, 1.00, 3.47, 3.85, 

25.04, 21.12, 20.03 
48.60% 42 361.42 42 919.23

 s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + s(Cv) 
+s(La*Lo) + s(Bt*Bs) + s(De*La) 

2.644, 1.00, 1.00, 3.47, 3.85, 
25.04, 21.12, 21.03

48.60% 42 358.74 42 908.00

*s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + s(Cv) 
+s(La*Lo) + s(Bt*Bs) + s(De*La) 

2.644, 1.00, 3.47, 3.85, 25.04, 
22.16, 21.03

48.60% 42 357.53 42 902.99

 s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + s(Cv) 
+s(La*Lo) + s(Bt*Bs) + s(De*La) 

2.654, 1.00, 3.85, 25.07, 24.41, 
21.09

48.40% 42 370.16 42 905.51
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Fig. 6. Diagnostic plots depicting the comparison of model performance between the parsimonious generalized additive 
model produced by backwards selection and thin plate regression splines. Predictive performance was assessed by 
cross validation. A graphical summary of observed vs predicted scallop (Placopecten magellanicus) density based on 
100 runs of random data sampling are displayed. 



J. Northw. Atl. Fish. Sci., Vol. 50, 201946

La
tit

ud
e 

(°
)

Predicted scallop densty

Longitude (°) 

Fig. 7. Map showing the spatial distribution of median predicted density of scallops (Placopecten magellanicus) in the 
nearshore Gulf of Maine from 2005–2013. The color ramp corresponds to predicted density (scallops per m2), where 
blue indicates low catches and red indicates high catches.

study, the dataset describing scallop distribution has low 
contrast in depth, it follows that depth is not a critical 
environmental component in this modeling framework.

The results show that, overall, a shrinkage approach where 
each variable in the full GAM was fitted with a thin plate 
regression spline including a thin plate spline penalty 
(TPRS) performed better across all model evaluation 
criteria than a classic, backwards selection procedure 
(BSP) for predicting scallop density. These results 
support findings from Marra and Wood (2011), which 
used simulated data to show that shrinkage approaches 
perform significantly better than competing approaches 
(including BSP) in terms of predictive ability, and are 
competitive in terms of variable selection performance. 
However, when using simulated data, the advantage of 
one modeling approach over another depends on the 
underlying structure of the simulated data, which makes 
it difficult to select a “best procedure” for all situations 
(Binder and Tutz, 2008). For example, Marra and Wood 
(2011) suggest that BSP would be preferred over shrinkage 
approaches in situations where the data have particularly 
high information content. Hence, using real-world data to 
evaluate the utility of model fitting and variable selection 
methods, as they apply to species distribution modeling, 
adds an important dimension to comparisons made with 
simulated data.

In addition to direct model performance benefits offered 
by TPRS, compared to BSP, shown here and in Marra 

and Wood (2011), there are other considerations that need 
to be taken into account when choosing an appropriate 
method for model fitting and variable selection. Stepwise 
procedures, such as BSP, have the potential to be 
inconsistent due to high sensitivity to small variability 
in the response data, which can sometimes lead to 
very different subsets of chosen variables. Additional 
variation in application of stepwise procedures results 
from a dependence on the initial starting path chosen 
through the variable space (Marra and Wood, 2011). 
Another downside of these procedures is that during 
variable selection and hypothesis testing using the 
selected model, p-values associated with model terms do 
not take into account variable selection uncertainty, and 
can therefore be misleading (Marra and Wood, 2011). 
Conversely, shrinkage approaches have been shown to 
be a valid alternative to stepwise procedures in terms 
of consistency among iterations of application, and 
increased robustness to variability in the data (Marra 
and Wood, 2011). Moreover, since variable selection 
in shrinkage approaches is carried out within a single 
step these methods are less computationally demanding, 
especially when using larger datasets (Leathwick et al., 
2006, Hesterberg et al., 2008).

An important limitation of this modeling framework is 
that the development of species distribution models relies 
upon environmental data, and as with any environmental 
data there are several possible sources of error that 
could cause misrepresentation of model predictions. The 
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current modeling framework relies particularly heavily 
upon FVCOM predictions. To evaluate performance of 
FVCOM within the study area, Tanaka and Chen (2016) 
and Li et al., (2017) performed comparisons between 
environmental monitors on observed temperature 
data to and FVCOM predictions. They found that in 
general, FVCOM adequately captured broad spatial and 
temporal trends in bottom temperature and salinity which 
adds validity to the quality and accuracy of FVCOM 
predictions.

In this study, environment-density relationships for 
scallops were defined upon only four environmental 
variables when, many physical, biological, and chemical 
conditions likely factor into the life history and 
distribution of this species. However, variables used to 
train the generalized additive model may have functioned 
as surrogates for factors directly controlling scallop 
distribution through physiological mechanisms (Austin,  
2007; Araujo and Peterson, 2012). From the associations 
between variables we can infer the relationship between 
spatiotemporal variability of environmental factors, 
habitat quality, and resulting scallop distribution. For 
example, salinity in this model may act as a proxy for 
broad scale spatial patterns in scallop distribution due to 
the inherent relationship between salinity and the origin 
of water mass existing in a given area. Environmental 
predictors in this study were selected based on availability 
and assumed correlation with scallop density. As more 

comprehensive environmental data becomes available in 
the future, studies to develop a further detailed species 
distribution modeling approach could include additional 
variables such as pH, dissolved oxygen, predator-prey, 
and other food-web interactions to capture a more 
comprehensive representation of scallop ecology (Araújo 
and Luoto, 2007).

The climate-niche SDM developed in this study 
establishes the ability to quantify relationships between 
a commercially important fish stock and the surrounding 
environment, which provides a tangible tool to visualize 
species distribution over space and time as well as to 
evaluate potential impacts of a changing GoM ecosystem. 
Also, our real-world evaluation of two common GAM 
selection and fitting procedures provides insights into the 
effectiveness of each method and can be incorporated into 
further research using GAMs. This modeling approach 
is highly generalizable to a variety of commercially 
important species and can advise conservation efforts 
for the scallop fishery in the GoM to help ensure the 
implementation of adaptive management strategies under 
uncertain climate conditions.

Acknowledgements.

We thank Kevin Kelly and Mike Kersula of Maine 
Department of Marine Resources for providing survey and 

La
tit

ud
e 

(°
)

C
hange in predicted scallop density from

 2005–2013

Longitude (°) 

Fig. 8. Map showing the temporal change in predicted density of scallops (Placopecten magellanicus) in the nearshore Gulf 
of Maine waters from 2005–2013. The color ramp corresponds to the degree of change in predicted density. Red areas 
have a positive change and blue areas have a negative change. 



J. Northw. Atl. Fish. Sci., Vol. 50, 201948

interview data along with model feedback. This research 
was supported by the US National Science Foundation 
Adaptation to Abrupt Climate Change IGERT program 
grant DGE-1144423, NOAA Scallop RSA fund, NSF 
Coastal SEES program and Maine Sea Grant College 
Program. This work uses the FVCOM developed by 
Dr. Changsheng Chen’s research team at the Marine 
Ecosystem Dynamics Modeling Laboratory, University 
of Massachusetts Dartmouth.

References

Akaike, H. (1974). A new look at the statistical model 
identification. Trans. Autom. Contr., 19: 716–723. https://
doi.org/10.1109/TAC.1974.1100705.

Araújo, M. B., and Luoto, M. (2007). The importance of biotic 
interactions for modelling species distributions under 
climate change. Glob. Ecol. Biogeogr., 16: 743–753 
https://doi.org/10.1111/j.1466-8238.2007.00359.x.

Araujo, M. B., and Peterson, A. T. (2012). Uses and misuses of 
bioclimatic envelope modeling. Ecology, 93: 1527–1539 
https://doi.org/10.1890/11-1930.1.

Austin, M. (2007). Species distribution models and 
ecological theory: A critical assessment and some 
possible new approaches. Ecol. Modell., 200: 1–19 
https://doi.org/10.1016/j.ecolmodel.2006.07.005.

Bailey, T. C., and Gatrell A. C. (1995). Interactive spatial data 
analysis. Longman Scientific and Technical.

Binder, H., and Tutz, G. (2008). A comparison of methods for 
the fitting of generalized additive models. Stat. Comput., 
18: 87–99. https://doi.org/10.1007/s11222-007-9040-0

Boulangeat, I., Gravel, D., and Thuiller, W. (2012). Accounting 
for dispersal and biotic interactions to disentangle the 
drivers of species distributions and their abundances. 
Ecol. Lett., 15: 584–593. https://doi.org/10.1111/j.1461-
0248.2012.01772.x.

Burnham, K. P., and Anderson, D. R. (2002). Model selection 
and multimodel inference. Springer Science + Business 
Media, New York.

Caddy, J. (1979). Long-term trends and evidence for production 
cycles in the Bay of Fundy scallop fishery. Rappel. Proces-
Verbaux des Reun. Conscil Int. pour l’Exploration la Mer 
15: 97–108.

Carsen, A. E., Hatcher, B.G., Scheibling, R. E., Hennigar, A.  W, 
and Taylor, L. H. (1995). Effects of site and season on 
movement frequencies and displacement patterns of juvenile 
sea scallops Placopecten magellanicus under natural 
hydrodynamic conditions in Nova Scotia, Canada. Mar. 
Ecol. Prog. Ser., 128: 225–238. https://doi.org/10.3354/
meps128225.

Catullo, R. A., Ferrier, S., and Hoffmann, A. A. (2015). Extending 
spatial modelling of climate change responses beyond 
the realized niche: Estimating, and accommodating, 
physiological limits and adaptive evolution. Glob. 
Ecol. Biogeogr. 24: 1192–1202. https://doi.org/10.1111/
geb.12344.

Chen, C., Beardsley, R. C., and Cowles, G. (2006). An 
unstructured-grid, finite-volume coastal ocean model 

(FVCOM) system. Oceanography, 19: 78–89. https://doi.
org/10.5670/oceanog.2006.92.

Chen, C., Beardsley, R., Cowles, G., Qi, J., Lai, Z., Gao, G., 
Stuebe, D., Xu, Q., Xue, P., Ge, J., Ji, R., Hu, S., Tian, R., 
Huang, H., Wu, L., and Lin, H. (2011). An unstructured-
grid, finite-volume community ocean model fvcom user 
manual. 3rd edition.

Crisp, M. D., Arroyo, M.T. K., Cook, L. G., Gandolfo, 
M. A., Jordan, G. J., McGlone, M. S., Weston, P. 
H., Westoby, M., Wilf, P., and Linder, H. P. (2009). 
Phylogenetic biome conservatism on a global scale. Nature, 
458: 754–756. https://doi.org/10.1038/nature07764.

Dickie, L. (1955). Fluctuations in abundance of the giant scallop, 
Placopecten magellanicus (Gmelin), in the Digby area of 
the Bay of Fundy. J. Fish. Res. Board Canada, 12: 797–857

 https://doi.org/10.1139/f55-045.
Drinkwater, K. F., and Gilbert, D. (2004). Hydrographic 

variability in the waters of the Gulf of St. Lawrence, 
the Scotian Shelf and the eastern Gulf of Maine (NAFO 
Subarea 4) during 1991–2000. J. Northwest Atl. Fish. Sci., 
34: 85–101. https://doi.org/10.2960/J.v34.m545.

Elith, J., Leathwick, J.R., and Hastie, T. (2008). A working guide 
to boosted regression trees. J. Anim. Ecol., 77: 802–813.

 https://doi.org/10.1111/j.1365-2656.2008.01390.x.
Frank, K. T., Perry, R. I., and Drinkwater, K. F. (1990). Predicted 

Response of Northwest Atlantic Invertebrate and Fish 
Stocks to CO2-Induced Climate Change. Trans. Am. 
Fish. Soc., 119: 335–365. https://doi.org/10.1577/1548-
8659(1990)119%3C0353:PRONAI%3E2.3.CO;2.

Franklin, J. (2010). Mapping Species Distributions. Spatial 
Inference and Prediction. Cambridge University Press

 https://doi.org/10.1017/CBO9780511810602.
Guisan, A., Edwards, T.C., and Hastie, T. (2002). Generalized 

linear and generalized additive models in studies of species 
distributions: setting the scene. Ecol. Modell. 157: 89–100

 https://doi.org/10.1016/S0304-3800(02)00204-1.
Hart D. R., and Chute A. S. (2004). Essential Fish Habiat Source 

Document: Sea Scallop, Placopecten magellanicus, Life 
History and Habitat Characteristics.

Hastie, T. (2009). The elements of statistical learning: data 
mining, inference, and prediction. Springer.

Hesterberg,T., Choi, N. H., Meier, L., and Fraley, C. (2008). 
Least angle and penalized regression: A review. Stat. Surv. 
2:  61–93. https://doi.org/10.1214/08-SS035.

Hijmans, R. J., Philips, S., Leathwick, J. R., and Elith, J. (2017). 
dismo: Species Distribution Modeling. https://cran.r-
project.org/web/packages/dismo/ (accessed02.04.13). 

Hollowed, A. B., Planque, B., and Loeng, H. (2013). Potential 
movement of fish and shellfish stocks from the sub-Arctic 
to the Arctic Ocean. Fish. Oceanogr. 22: 355–370.

 https://doi.org/10.1111/fog.12027.
Howell, P., and Auster, P.J. (2012). Phase Shift in an 

Estuarine Finfish Community Associated with Warming 
Temperatures. Mar. Coast. Fish., 4: 481–495. https://doi.
org/10.1080/19425120.2012.685144.

Kelly, K. H. (2012). Results from the 2011 Maine sea scallop 
survey.

Kurihara, H. (2008). Effects of CO2-driven ocean acidification 

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1111/j.1466-8238.2007.00359.x
https://doi.org/10.1890/11-1930.1
https://doi.org/10.1016/j.ecolmodel.2006.07.005
https://doi.org/10.1007/s11222-007-9040-0
https://doi.org/10.1111/j.1461-0248.2012.01772.x
https://doi.org/10.1111/j.1461-0248.2012.01772.x
https://doi.org/10.3354/meps128225
https://doi.org/10.3354/meps128225
https://doi.org/10.1111/geb.12344
https://doi.org/10.1111/geb.12344
https://doi.org/10.5670/oceanog.2006.92
https://doi.org/10.5670/oceanog.2006.92
https://doi.org/10.1038/nature07764
https://doi.org/10.1139/f55-045
https://doi.org/10.2960/J.v34.m545
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1577/1548-8659(1990)119%3C0353:PRONAI%3E2.3.CO;2
https://doi.org/10.1577/1548-8659(1990)119%3C0353:PRONAI%3E2.3.CO;2
https://doi.org/10.1017/CBO9780511810602
https://doi.org/10.1016/S0304-3800(02)00204-1
https://doi.org/10.1214/08-SS035
https://cran.r-project.org/web/packages/dismo/
https://cran.r-project.org/web/packages/dismo/
https://doi.org/10.1111/fog.12027
https://doi.org/10.1080/19425120.2012.685144
https://doi.org/10.1080/19425120.2012.685144


TORRE et al.: Modeling and spatiotemporal trends in Placopecten magellanicus in the Gulf of Maine, USA 49

on the early developmental stages of invertebrates. Mar. 
Ecol. Prog. Ser. 373: 275–284. https://doi.org/10.3354/
meps07802.

Leathwick, J. R., Elith J., and Hastie, T. (2006). Comparative 
performance of generalized additive models and multivariate 
adaptive regression splines for statistical modelling of 
species distributions. Ecol. Modell. 199: 188–196.

 https://doi.org/10.1016/j.ecolmodel.2006.05.022.
Li, Y., Jiao, Y., and He, Q. (2011). Decreasing uncertainty in 

catch rate analyses using Delta-AdaBoost: An alternative 
approach in catch and bycatch analyses with high 
percentage of zeros. Fish. Res., 107: 261–271. https://doi.
org/10.1016/j.fishres.2010.11.008.

Li, B., Tanaka, K.R., Chen, Y., Brady, D.C., and Thomas, A. C. 
(2017). Assessing the quality of bottom water temperatures 
from the Finite-Volume Community Ocean Model 
(FVCOM) in the Northwest Atlantic Shelf region. 
J. Mar. Syst. 173: 21–30. https://doi.org/10.1016/j.
jmarsys.2017.04.001.

MacDonald, B., and Thompson, R. (1985). Influence of 
temperature and food availability on the ecological 
energetics of the giant scallop Placopecten magellanicus. II. 
Reproductive output and total production. Mar. Ecol. Prog. 
Ser., 25: 295–303. https://doi.org/10.3354/meps025279. 
https://doi.org/10.3354/meps025295.

Marra G., and Wood S.N. (2011). Practical variable selection 
for generalized additive models. Comput. Stat. Data Anal. 
55: 2372–2387. https://doi.org/10.1016/j.csda.2011.02.004

Mendo T., Lyle J. M., Moltschaniwskyj N. A., Tracey S. R., 
Semmens J.M. (2014). Habitat characteristics predicting 
distribution and abundance patterns of scallops in 
D’Entrecasteaux Channel, Tasmania. PLoS One, 9: 1–9. 
https://doi.org/10.1371/journal.pone.0085895.

Merow C., Smith M. J., Edwards T. C., Guisan A., Mcmahon 
S.M., Normand S., Thuiller W., Wüest R. O., Zimmermann 
N.E., and Elith J. (2014). What do we gain from simplicity 
versus complexity in species distribution models? 
Ecography, (Cop) 37:1267–1281. https://doi.org/10.1111/
ecog.00845.

Mills K. E., Pershing A. J., Brown C. J., Chen Y., Chiang F.-S., 
Holland D. S., Lehuta S., Nye J. A., Sun J. C., Thomas A. 
C.,  and Wahle R. A. (2013). Fisheries management in a 
changing climate: Lessons from the 2012 ocean heat wave 
in the northwest Atlantic. Oceanography, 26: 191–195. 
https://doi.org/10.5670/oceanog.2013.27.

Naidu K., and Anderson J. (1984). Aspects of scallop recruitment 
on St. Pierre Bank in relation to oceanography and 
implications for resource management. Can. Atl. Fish. Sci. 
Adv. Comm. Res. Doc. 84: 9 p.

National Geophysical Data Center. (1999). U.S. Coastal Relief 
Model - Northeast Atlantic.

Nye J. A., Link J. S., Hare J. A., and Overholtz W. J. (2009). 
Changing spatial distribution of fish stocks in relation to 
climate and population size on the Northeast United States 
continental shelf. Mar. Ecol. Prog. Ser., 393: 111–129

 https://doi.org/10.3354/meps08220.
Ornellas P. De, Milner-Gulland E. J., Nicholson E. (2011). The 

impact of data realities on conservation planning. Biol. 

Conserv., 144: 1980–1988. https://doi.org/10.1016/j.
biocon.2011.04.018.

Overholtz W. J., Hare J. A., and Keith C. M. (2011). Impacts of 
Interannual Environmental Forcing and Climate Change on 
the Distribution of Atlantic Mackerel on the U.S. Northeast 
Continental Shelf. Mar. Coast Fish. 3: 219–232.

 https://doi.org/10.1080/19425120.2011.578485
Pearson R. G., Dawson T. P. (2003). Predicting the impacts of 

climate change on the distribution of species : are bioclimate 
envelope models useful? Glob. Ecol. Biogeogr. 12: 361–
371. https://doi.org/10.1046/j.1466-822X.2003.00042.x.

Pershing A. J., Alexander M. A., Hernandez C. M., Kerr L. A., 
Bris A. Le, Mills K. E., Nye J. A., Record N. R. , Scannell 
H. A., Scott J. D., Sherwood G. D., and Thomas A. C. 
(2015). Slow adaptation in the face of rapid warming leads 
to collapse of the Gulf of Maine cod fishery. Science (80- ) 
350: 809–812. https://doi.org/10.1126/science.aac9819.

Pilditch C. A., and Grant J. (1999). Effects of variation in flow 
velocity and phytoplankton concentration on sea scallop 
(Placopecten magellanicus) grazing rates. J. Exp. Mar. 
Bio. Ecol., 240: 111–136. https://doi.org/10.1016/S0022-
0981(99)00052-0.

R Core Development Team. (2016) R: A language and 
environment for statistical computing.

Sagarese S. R., Frisk M. G., Cerrato R. M., Sosebee K. A., 
Musick J. A. , and Rago P. J. (2014). Application of 
generalized additive models to examine ontogenetic and 
seasonal distributions of spiny dogfish (Squalus acanthias) 
in the Northeast (US) shelf large marine ecosystem. Can. 
J. Fish. Aquat. Sci., 71: 847–877. https://doi.org/10.1139/
cjfas-2013-0342.

Sarro C. L., and Stokesbury K. D. E. (2009). Spatial and temporal 
variation in the shell height/meat weight relationship of 
the sea scallop Placopecten magellanicus in the Georges 
Bank fishery. J. Shellfish Res. 28: 497–503. https://doi.
org/10.2983/035.028.0311.

Schick D., Shumway S., and Hunter M. (1988). A comparison 
of growth rate between shallow water and deep water 
populations of scallops, Placopecten magellanicus(Gmelin, 
1791), in the Gulf of Maine. Am. Malacol. Bull. 6: 1–8.

Shono H. (2008) Application of the Tweedie distribution to 
zero-catch data in CPUE analysis. Fish Res. 93: 154–162.

 https://doi.org/10.1016/j.fishres.2008.03.006.
Shumway S. E., Parsons G. J. (2006). Scallops: Biology, Ecology 

and Aquaculture. Elsevier
Smith P. A. (1994). Autocorrelation in Logistic Regression 

Modelling of Species’ Distributions. Glob. Ecol. Biogeogr. 
Lett., 4: 47–61. https://doi.org/10.2307/2997753

Stewart P., and Arnold S. (1994). Environmental requirements 
of the sea scallop (Placopecten magellanicus) in eastern 
Canada and its response to human impacts. Can. Tech. Rep. 
Fish. Aquat. Sci. 2005: 1–36

Stokesbury K. D. E., and Himmelman J. H. (1995) Biological 
and physical variables associated with aggregations of 
the giant scallop Placopecten magellanicus. Can. J. Fish. 
Aquat. Sci., 52:743–753. https://doi.org/10.1139/f95-074.

Tanaka K. R., Chang J.-H., Xue Y., Li Z., Jacobson L., and Chen 
Y. (2018). Mesoscale climatic impacts on the distribution 

https://doi.org/10.3354/meps07802
https://doi.org/10.3354/meps07802
https://doi.org/10.1016/j.ecolmodel.2006.05.022
https://doi.org/10.1016/j.fishres.2010.11.008
https://doi.org/10.1016/j.fishres.2010.11.008
https://doi.org/10.1016/j.jmarsys.2017.04.001
https://doi.org/10.1016/j.jmarsys.2017.04.001
https://doi.org/10.3354/meps025279
https://doi.org/10.3354/meps025295
https://doi.org/10.1016/j.csda.2011.02.004
https://doi.org/10.1371/journal.pone.0085895
https://doi.org/10.1111/ecog.00845
https://doi.org/10.1111/ecog.00845
https://doi.org/10.5670/oceanog.2013.27
https://doi.org/10.3354/meps08220
https://doi.org/10.1016/j.biocon.2011.04.018
https://doi.org/10.1016/j.biocon.2011.04.018
https://doi.org/10.1080/19425120.2011.578485
https://doi.org/10.1046/j.1466-822X.2003.00042.x
https://doi.org/10.1126/science.aac9819
https://doi.org/10.1016/S0022-0981(99)00052-0
https://doi.org/10.1016/S0022-0981(99)00052-0
https://doi.org/10.1139/cjfas-2013-0342
https://doi.org/10.1139/cjfas-2013-0342
https://doi.org/10.2983/035.028.0311
https://doi.org/10.2983/035.028.0311
https://doi.org/10.1016/j.fishres.2008.03.006
https://doi.org/10.2307/2997753
https://doi.org/10.1139/f95-074


J. Northw. Atl. Fish. Sci., Vol. 50, 201950

of Homarus americanus in the US inshore Gulf of Maine. 
Can. J. Fish. Aquat. Sci., 76(4): 608–625. https://doi.
org/10.1139/cjfas-2018-0075.

Tanaka K., and Chen Y. (2015). Spatiotemporal variability 
of suitable habitat for American lobster (Homarus 
Americanus) in Long Island Sound. J. Shellfish Res., 34: 
531–543. https://doi.org/10.2983/035.034.0238.

 (2016) Modeling spatiotemporal variability of the bioclimate 
envelope of Homarus americanus in the coastal waters of 
Maine and New Hampshire. Fish. Res., 177: 137–152. 
https://doi.org/10.1016/j.fishres.2016.01.010.

Thouzeau G., Robert G., and Smith S. J. (1991). Spatial 
variability in distribution and growth of juvenile and adult 
sea scallops Placopecten magellanicus (Gmelin) on eastern 
Georges Bank (northwest Atlantic). Mar. Ecol. Prog. Ser., 
74: 205–218. https://doi.org/10.3354/meps074205. 

Torre M. P., Tanaka K. R., and Chen Y. (2018). A spatiotemporal 
evaluation of Atlantic sea scallop Placopecten magellanicus 
habitat in the Gulf of Maine using a Bioclimate Envelope 
Model. Mar. Coast. Fish. 10: 224–235. 

 https://doi.org/10.1002/mcf2.10022
Tremblay, M. J. (1997) Snow crab (Chionoecetes opilio) 

distribution limits and abundance trends on the Scotia Shelf. 
J. Northw. Atl. Fish. Sci., 21: 7–21. 

 https://doi.org/10.2960/J.v21.a1
Wildish, D., and Kristmason, D. (1993). Bivalve Filter Feeders 

in Estuarine and Coastal Ecosystem Processes. In: NATO 
ASI Series.

Wildish, D. J., and Saulnier, A. M. (1992). The effect of velocity 
and flow direction on the growth of juvenile and adult giant 
scallops. J. Exp. Mar. Bio. Ecol., 133: 133–143.

 https://doi.org/10.1016/0022-0981(92)90032-6
Wood, S. N. (2003). Thin plate regression splines. J. R. Stat. Soc. B., 

65: 95–114. https://doi.org/10.1111/1467-9868.00374
 (2006) Generalized additive models: an introduction 

with R. Chapman and Hall, London. https://doi.
org/10.1201/9781420010404

 (2011). Fast stable REML and ML estimation of semiparametric 
GLMs. J. R. Stat. Soc. Ser B. (Statistical Methodol., 73: 
3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x

Young, M., and Carr, M. H. (2015). Application of species 
distribution models to explain and predict the distribution, 
abundance and assemblage structure of nearshore temperate 
reef fishes. Divers. Distrib. 21: 1428–1440.

 https://doi.org/10.1111/ddi.12378
Zuur, A. F., Ieno, E. N., and Smith, G. M. (2007). Analysing 

Ecological Data. Springer Science and Business Media.
 https://doi.org/10.1007/978-0-387-45972-1
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, 

G. M. (2009). Mixed effects models and extensions in 
ecology with R. Springer, New York.

 https://doi.org/10.1007/978-0-387-87458-6

https://doi.org/10.1139/cjfas-2018-0075
https://doi.org/10.1139/cjfas-2018-0075
https://doi.org/10.2983/035.034.0238
https://doi.org/10.1016/j.fishres.2016.01.010
https://doi.org/10.3354/meps074205
https://doi.org/10.1002/mcf2.10022
https://doi.org/10.2960/J.v21.a1
https://doi.org/10.1016/0022-0981(92)90032-6
https://doi.org/10.1111/1467-9868.00374
https://doi.org/10.1201/9781420010404
https://doi.org/10.1201/9781420010404
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/ddi.12378
https://doi.org/10.1007/978-0-387-45972-1
https://doi.org/10.1007/978-0-387-87458-6

	_Hlk505600383
	_Hlk504929420
	_Hlk1049075

