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Abstract
The species composition and number of sharks used by the shark fin trade were estimated from a partial 

set of daily auction records for the world's largest shark fin trading centre in Hong Kong for the period October 
1999 to March 2001. More than 10 000 lot descriptions of shark type, fin position, fin size and fin weight were 
translated and statistically modeled using Bayesian Markov Chain Monte Carlo methods (WinBUGS). These 
methods allowed a robust estimation of missing information in individual auction records, as well as of entire 
auctions for which no data are available, through a hierarchical model with uninformative priors. The model 
provides estimates of the complete data set for the sampled period, including the total auctioned weights of 
fins by shark type and fin position. Separate studies, undertaken in Hong Kong to genetically map trade names 
to species names, are being used to align the estimates with particular taxa. This paper demonstrates how the 
traded quantity estimates can be converted to the weight and number of sharks represented based on preliminary 
conversion factors from the literature and from this research. A potentially more robust Bayesian conversion 
algorithm, involving fin size-classes and stochastic relationships between fin lengths and fin weights, is outlined 
for future implementation. 
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Introduction
Much of the current concern regarding the sustainable 

use of shark resources centres on the practice of finning 
and the role of the shark fin trade in driving shark mor-
tality. A detailed case study analysis could be undertaken 
of the many variables determining whether sharks are 
targeted and finned in particular fisheries (e.g. McCoy 
and Ishihara, 1999). However, available market data can 
be used cost-effectively to assess the numbers of sharks 
represented by traded quantities of shark fin, and to iden-
tify the species composition in trade. Given the absence 
of extensive and reliable species-specific shark catch 
statistics, estimates of shark landed weights or numbers 
generated from fin trade-based studies can also provide 
useful reference points against which to evaluate reported 
shark catch rates. In these ways, shark fin market data can 
contribute to a better understanding of shark utilization 
rates and provide useful insights into the current pressures 
facing world shark populations. Similar methods, once 
proven, can also be applied to other marine or wildlife 
species of concern. 

Hong Kong, which serves as an entrepôt for Mainland 
China, has been the centre of the world trade in shark fins 
for many decades (Kreuzer and Ahmed, 1978; Parry-

Jones, 1996; Vannuccini, MS 1999; Fong and Anderson, 
2002). Estimates of Hong Kong's share of the trade have 
varied between 50% and 85% ((Tanaka, 1994) (based on 
1990 data); Vannuccini, MS 1999 (based on 1992 data); 
Clarke, MS 2002 (based on 2000 data)). In recent years, 
unprocessed shark fins have been exported to Hong Kong 
by at least 85 countries on six continents (Clarke and 
Mosqueira, 2002). Even when a recent trend towards 
importing more shark fins in frozen form is accounted 
for, the weight of imports into Hong Kong has increased 
year-on-year at a rate of 5% (Clarke, MS 2002). Rather 
than relying on customs statistics, this study is based on 
records from daily shark fin auctions held in Hong Kong 
by approximately 16 different trading houses. A propor-
tion of fins imported to Hong Kong in unprocessed form 
are auctioned by importers to processors, who generally 
re-export the fins to Mainland China for low-cost process-
ing. Data collection at this point in the supply chain allows 
fins to be characterized by shark type, fin position, and 
fin size. Since this market draws large quantities of shark 
fins from all over the world, detailed characterization of 
this market can be extrapolated, with appropriate caveats, 
to depict the global trade. 

This paper describes a probabilistic (Bayesian) 
approach to modeling shark fin auction data and 
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demonstrates how these can be used to derive estimates 
of total traded fin weights and shark numbers. Although 
Bayesian statistics are computationally more demanding 
than frequentist analogs, their use in fishery stock assess-
ment is steadily gaining momentum (Punt and Hilborn, 
1997; McAllister and Kirkwood, 1998; McAllister et 
al., 2001). Bayesian methods allow parameters to be 
treated as random variables rather than as fixed values 
and thus explicitly account for uncertainty in the statistical 
modeling, as well as provide a more intuitively obvious 
interpretation of resulting probabilities. This application 
of probabilistic statistics involves prediction and filling 
of missing trade data, resulting in more reliable estimates 
and probability intervals. 

Materials and Methods
Shark fins auctioned in Hong Kong are organized 

into lots, which are described on sheets distributed to all 
participating bidders. Each sheet lists the name of the 
trading house, the date, a description of the fin (by trade 
name of which some are loosely species-specific, and by 
fin size and position), and the number of bags in each lot. 
These records are usually annotated after the auction by 
official record keepers to show the weight and official 
selling price of each lot. Because the records do not pro-

vide information about the source location of the fins, it 
is not possible to draw any conclusions about the country 
or ocean of origin from these records. Sheets from 148 
auctions were obtained spanning the period from Octo-
ber 1999 to February 2001, representing a subset of all 
auctions held. Lot descriptions, weights and prices were 
translated and transcribed into an Excel database for all 
10 669 lots. In addition, a calendar showing the name 
of the trading houses holding auctions between October 
1999 and March 2001 was compiled to identify missing 
auction records. During this period, 513 auctions were 
held, ~29% of which was observed. 

Statistical models were developed to address two 
important deficiencies in the data set. One model was 
for filling of missing lot weights for a small number of 
trading houses which refused to disclose this information 
(Model A). The other model was for filling of auctioned 
quantities on dates for which no records were available 
(Model B). The models were formulated using WinBUGS 
(Bayesian inference Using Gibbs Sampling) software, 
version 1.3 (http://www.mrc-bsu.cam.ac.uk/bugs) with 
a hierarchical modeling approach (Gelman et al., 1995). 
Once a complete data set was generated, the results were 
extrapolated to characterize the shark fin trade in Hong 
Kong as well as the global market (Fig. 1). 

Fig. 1.  Overview of the study methodology describing the available data, the use of Models A and B to fill in missing 
data, and the resulting extrapolation from the dataset to the global trade in shark fins. 
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Although shark fin lots were described on the sheets 
using more than 50 different market categories for shark 
type, this analysis focused on eleven common categories 
plus one additional composite category for all other 
types. The eleven categories were chosen to complement 
a parallel study mapping these categories to particular 
species or genera using DNA polymerase chain reaction 
techniques (Shivji et al., 2002; Clarke, 2003). Trade cat-
egory-taxonomic matches currently undergoing testing are 
shown in Table 1. Traders often record the fin position for 
each lot, particularly when the market value of the fins 
depends not only on the type of shark, but also on the body 
position of the fin. The three most commonly recorded 
fin positions are dorsal, pectoral, and lower caudal, but 
other fin positions, such as anal, upper caudal, and second 
dorsal, are also observed. In this analysis, only the three 
most common fin positions were modeled separately. All 
other fin positions, including large numbers of lots of 
unspecified fins, were grouped into an "other" category. 
No temporal trends in weights from observed auctions or 
in overall import records for Hong Kong were observed. 
Furthermore, seasonal supply patterns for particular spe-
cies were not acknowledged by traders and were expected 
to be obscured both by the number of importing countries 
and the ability to stockpile dried fins at the point of origin 
(Clarke, MS 2002). For these reasons, seasonal effects 
were not considered important in the model.

The aim of Model A was to predict the lot weight 
for records that revealed only the number of bags in the 
lot. This involved using the relationship between the 
number of bags in the lot and the lot weight determined 
from those records where both data were disclosed. The 
data points used when estimating this relationship were 
the average number of bags and average lot weight for 
each combination of shark type and fin position for each 

auction.All observations for which the average number 
of bags was zero (i.e. there were no fins of that particular 
combination auctioned) were removed to avoid biasing the 
relationship. Plots of these data indicated a linear equation 
of the form ,y mx b= + where y is the average lot weight 
and x is the average number of bags in the lot, would be 
appropriate (Fig. 2). However, to account for potential 
differences in slope and intercept by shark type and fin 
position, the model was expanded to include additive ef-
fects for slope and intercept. The model took the form of 
mean weight = ((base slope + shark effect + fin effect) × 
mean number of bags) + (base intercept + shark effect 
+ fin effect). To avoid negative weight values, all weight 
data were transformed by natural logarithm, the model was 
fitted to the transformed data, and all predicted weights 
were back-transformed. The overall slope and intercept 
as well as slope and intercept effects for each shark type 
and fin position were estimated using normally distributed 
uninformative (diffuse) priors (Fig. 3). The shark type 
and fin position effects were constrained to sum to zero. 
A normally distributed error term for the regression equa-
tion was also included, i.e., ε= + +y mx b which accounts 
for the variance in mean lot weight. 

The model estimates a base slope and intercept for 
all observed fins in aggregate as well as separate additive 
effects (or offsets) for each shark type and fin position 
individually. The shark type-specific and fin position-
specific slope and intercept were used to predict the 
average lot weight for that combination. In the final step, 
the average lot weight was multiplied by the observed 
number of lots of that combination in each auction to 
provide a total auction weight for the combination. The 
prior probability distributions (priors) are uninformative 
(diffuse). However, the data consist of 1 980 pairs (average 
number of bags, average lot weight per auction) of points 
which exert a strong influence on the estimated slope and 
intercept parameters (posterior probability distributions or 
posteriors). Using an in-built capacity of the WinBUGS 

TABLE 1. Hypothesized matches between trade names used in the Hong Kong shark fin market and scientific taxa.  
Detailed testing and verification of these matches is the subject of a parallel study (Shivji et al., 2002; 
Clarke, 2003).

Trade name  Scientific name

Ya Jian ..................................................................  Prionace glauca
Qing Lian .............................................................  Isurus oxyrinchus or I. paucus
Wu Yang ...............................................................  Carcharhinus falciformis, C. galapagensis or C. albimarginatus
Hai Hu ..................................................................  Carcharhinus obscurus
Bai Qing ...............................................................  Carcharhinus plumbeus
Ruan Sha ..............................................................  Galeocerdo cuvier
Chun Chi ..............................................................  Sphyrna zygaena, S. lewini, S. mokarran or Sphyrna sp.
Gu Pian.................................................................  Sphyrna mokarran or Sphyrna sp.
Wu Gu ..................................................................  Alopias sp. or Isurus paucus
Sha Qing...............................................................  Carcharhinus leucas or Carcharhinus amboinensis 
Liu Qiu .................................................................  Carcharhinus longimanus
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Fig. 2.  Plot of average number of bags per lot per auction against average weight 
per lot per auction, by (A) shark type and (B) fin position. Although this 
study uses a Bayesian approach to determining the appropriate slopes and 
intercepts, maximum likelihood-based linear trend lines are used here to il-
lustrate that slopes and intercepts vary by shark type and fin position. These 
effects should thus be treated as offsets from a base slope and intercept. 
Labels for shark type follow the Chinese trade names in parentheses: Ya 
Jian (YJ), Qing Lian (QL), Wu Yang (WY), Hai Hu (HH), Bai Qing (BQ), 
Ruan Sha (RS), Chun Chi (CC), Gu Pian (GP), Wu Gu (WG), Sha Qing 
(SQ), Liu Qiu (LQ), and other (OT) (see Table 1 for associated species 
names). Labels for fin position also follow in parentheses: dorsal (D), 
pectoral (P), lower caudal (C), and other (O). Outliers have been removed 
for presentation only.

software for data filling, lot weights were predicted for 
313 missing values. Although the numbers of missing data 
points filled by Model A is small relative to the number 
of complete records, these 313 values derive mainly from 
one of Hong Kong's largest traders. Therefore, the results 
of Model A allow complete records from this trader to 
be generated from data available from other traders, and 
provide a full set of traded weights for every observed 

auction. Model B was designed as a mixed binomial-
negative binomial model using the traded weight for 
each shark type-fin position combination in each auction 
as the basis for predicting analogous traded weights in 
unobserved auctions. The mixed model conceptualization 
was motivated by plots of total auction weight by shark 
type-fin position combination, which showed a large spike 
of values at zero i.e. many instances in which no fins of a 
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Fig. 3.  Flowchart showing derivation and relationships between parameters for Model A. Large rectangular boxes rep-
resent loops. Thin arrows indicate that the 'parent' node determines the 'child' node in a stochastic manner. Bold 
arrows indicate that the 'child' node is logical and therefore calculated from the 'parent' node. Ovals represent 
stochastic nodes (random variables), whereas small rectangles represent deterministic nodes, such as data or 
fixed values for priors (values as shown). Priors for mean nodes (rectangles) were assumed normally distributed 
around zero (for effects) or one (for base slope and intercept). Priors for variance nodes (rectangles) were set at 
1 000. All random variables for precision (1/variance) were determined using a gamma distribution with scale 
parameter 0.001 and shape parameter 0.001; these precision priors are not shown on the diagram for simplifica-
tion purposes. 

particular combination were auctioned, and a flattened dis-
tribution with a long tail of non-zero values representing 
observations where fins of the particular combination were 
auctioned with total weights varying over a wide range 
(Fig. 4). These data points were found to fit the negative 
binomial distribution (as given in Hilborn and Mangel, 
1997) through chi squared testing (0.975<P<0.99). The 
data also suggested that traded weights varied by trading 
house. Thus, it was decided to use the model to predict 
posterior distributions for the traded weight-per-auction 
for all combinations of shark type (12), fin position (4), 
and trader (16), i.e. 768 combinations in total. 

The binomial portion of Model B estimates the prob-
ability of zero traded weight, using, as in Model A, a base 
parameter with additive effects for shark type, fin position, 

trader, and an additional shark type-fin position interac-
tion term (Fig. 5). The interaction term is necessary in the 
binomial portion of the model only. This is because some 
sharks' fins vary considerably in value depending on fin 
position; thus, the fins are always sorted by fin position 
and never left unspecified. In contrast, when a particular 
shark's fins are all nearly equal in value, regardless of fin 
position, the fin position is frequently left unspecified, 
which results in a very low probability of observing a zero 
weight in the unspecified category. The negative binomial 
portion of Model B predicts the traded weight of fins when 
the traded weight is not zero. This portion of the model 
also uses base parameters and offsets for shark type, fin 
position, and trader effects. In each Monte Carlo itera-
tion of the model, the product of the binomial parameter, 
(either 0 or 1) and the negative binomial parameter (a 
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A.

B.

Fig. 4.  Example histogram of data for a given shark type-fin position combination showing the observed 
distribution of total weight per auction for Ya Jian pectoral fins, (A) with zero observations included 
and  (B) with zero observations excluded.

positive integer representing traded weight-per-auction) 
is calculated for each of the 768 combinations. A prob-
ability distribution is generated for each shark type-fin 
position combination. 

The final step in Model B involves sampling from 
the distributions of the 768 combinations to fill in an ar-
ray representing the auction calendar for the period from 
October 1999 to March 2001. The array consists of 48 
shark type-fin position combinations in one dimension and 
a vector of the sequence in which trading houses held auc-
tions in the other dimension (513 auctions in total). Each 
cell in the array can thus be either filled by an observed 
traded weight or mapped to one of the 768 distributions 
and iteratively sampled. Column totals produced through 

iteration provide total traded weights by shark type and 
fin position over the 18-month period of interest. 

Results
The first step in using Model A was to simplify the 

12 effects terms for shark type and the 4 effects terms for 
fin position. This step both improved the convergence 
efficiency of the model and increased the estimation 
power for those shark types with limited observations. 
To accomplish this, Model A was run using only shark 
type effects, probability intervals for each shark type ef-
fect were observed, and shark types were grouped based 
on similarities in the intervals. Similar model runs were 
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Fig. 5.  Flowchart showing derivation and relationships between parameters for Model B. See Fig. 3 caption for explana-
tion of icons. This model uses an alternative formulation of the negative binomial distribution, such that 'z[i]' is 
normally distributed with mean 'lambda[i]' and precision 'prec[i]', with 'prec[i]' = 1/'lambda[i]', and 'lambda[i]' 
determined by a gamma distribution with scale 'k' and shape 'k/mu[i]'. Parameter 'z[i]', representing traded fin 
weight, thus takes a negative binomial distribution. Parameter 'g' determines the probability of observing a zero 
weight and 'p' is the logit transformation of 'g'. Parameter 'p' is used to derive 'y', a binomial random variable. 
The product of 'z' and 'y', i.e. 'x', is the observed/predicted traded weight. Priors for mean nodes (rectangles) were 
assumed normally distributed around zero (for effects) or one (for base 'mu', 'k' and 'g'). Priors for variance nodes 
(rectangles) were set at 1 000. All random variables for precision (1/variance) were determined using a gamma 
distribution with scale parameter 0.001 and shape parameter 0.001; these precisions priors are not shown on the 
diagram for simplification purposes. 

undertaken to group fin position effects. Results from 
these initial runs indicated that for the slope parameter the 
number of effects for shark type could be reduced from 
12 to 3, and the number of effects for fin position could 
be reduced from 4 to 3. For the intercept parameter, the 
number of shark type effects could be reduced from 12 
to 4, but all 4 fin position effects needed to be retained. 
The full model was then run for the reduced number of 
effects, i.e. 14 rather than 32 (Table 2). 

The appropriateness of grouping and reducing the 
number of effects for shark type and fin position was 
evaluated by using the model to predict values for all 
observed data points (n = 1 980). Posterior predictive 

P-values (Gelman et al., 1995) were then calculated to 
quantify where in the posterior predictive distribution the 
observed value lies. Those shark types or fin positions with 
P-values of less than 0.05, indicating a significant under-
prediction by the model, were re-examined and iteratively 
re-grouped, if necessary, to minimize the number of low 
P-values across groups. This was to ensure that all shark 
type-fin position combinations were accurately predicted. 
Under the final effects groupings, only 2.4% of the 1 
980 P-values were <0.05 and these groups represented 
the best compromise between the number of parameters 
to be estimated and the predictive power of the model. 
Convergence was evaluated for all slopes, intercepts and 
effects using several tests provided within the WinBUGS 
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TABLE 2. Grouping of trader-, fin-position and shark-type effects for the 
parameters in Models A and B (see Fig. 3 and 4 for more information 
on the parameters).  

    Original Number Final Number
Model Parameter Effect of Effects  of Effects

 A 'slope' Shark type 12 3
   F in position   4 3
  'intercept' Shark type 12 4
   F in position   4 4
 B 'mu' Trader type 16 4
   Shark type 12 4
   F in position   4 2
  'k' Trader type 16 3
   Shark type 12 2
   F in position   4 4
  'g' Trader type 16 3
   Shark type 12 4
   F in position   4 2

Convergence Diagnostics and Output Analysis software 
(CODA).

Due to the log-space estimation in Model A, me-
dians rather than means from each of the 313 predicted 
distributions (Fig. 6) were used as input to Model B. The 
use of these medians as point estimates for 313 of the 
7 104 data points input to Model B tends to narrow the 
probability distributions resulting from Model B. The 
use of a unique probability distribution function for each 
median from Model A would be preferable and will be 
incorporated in future. 

As with Model A, initial runs of Model B were de-
voted to examining the overlap in the probability intervals 
for effect terms to discern whether the number of effects to 
be estimated could be reduced. Model B requires effects 
to be assigned for two parameters in the negative binomial 
portion of the model and one parameter in the binomial 
portion. Results indicated that the original 16 trader ef-
fects, 4 fin position effects, and 12 shark type effects 
could be simplified into a smaller number of effects terms 
by grouping trader-, fin-position and shark-type without 
loss of predictive power (Table 2). The interaction term, 
applied only in the binomial portion of the model, was 
calculated for each unique combination of shark type-fin 
position from the reduced number of shark type and fin po-
sition groups. Convergence for all effects parameters was 
evaluated using CODA. In cases where these diagnostics 
indicated inefficiency or lack of convergence, the group-
ing of effects terms was re-evaluated to assess whether 
alternative groups could improve convergence efficiency 

without sacrificing predictive power. Ultimately, all pa-
rameter estimates converged using the limited number of 
effects shown in Table 2.

Evaluation of posterior predictive p-values showed 
that ~4% of the simulated data points significantly under-
predicted the actual values. To avoid a downward bias 
in the final results, the predicted values for all observed 
data points were summed and compared with the sum of 
all observed data points. The predicted value sum was 
91.338% of the observed sum and thus a correction factor 
of 1.095 was applied in the model to every predicted data 
point prior to the final array summation.

The results of Model B are the mean and its 95% 
probability interval for each shark type-fin position com-
bination modeled (Table 3). Each value represents the 
summation of all observed data, and a number of samples 
from the predicted data distribution for each combination 
based on the known number of auctions held and the iden-
tity of the trader holding the auction. Nodes were included 
in the model to iteratively sum the traded fin weights for 
each shark type (i.e. all fin positions combined within each 
shark type), and overall, to provide a mean and probability 
interval for each sum (Table 4). The proportion that each 
shark type forms of the overall traded shark fin weight 
was also estimated stochastically (Table 4).

These results indicate that of the individually mod-
eled market categories of shark type, Ya Jian, thought to 
correspond to blue shark (Prionace glauca) comprises 
the largest distinct proportion of fins at 18.2%. The next 
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TABLE 2. Grouping of trader-, fin-position and shark-type effects for the 
parameters in Models A and B (see Fig. 3 and 4 for more information 
on the parameters).  

    Original Number Final Number
Model Parameter Effect of Effects  of Effects

 A 'slope' Shark type 12 3
   F in position   4 3
  'intercept' Shark type 12 4
   F in position   4 4
 B 'mu' Trader type 16 4
   Shark type 12 4
   F in position   4 2
  'k' Trader type 16 3
   Shark type 12 2
   F in position   4 4
  'g' Trader type 16 3
   Shark type 12 4
   F in position   4 2

Fig. 6.  Total weight-per-auction by shark type (see Table 1 for associated species names) in observed and predicted data 
sets. Data points for each shark type represent a mixture of all fin positions for presentation purposes only. Fig. 6 (A) 
shows a histogram (frequency vs kg) of the observed total auction weights for each shark type. Fig. 6 (B) shows the 
95% probability intervals for each of the 313 missing data points produced by Model A for each shark type. For each 
missing data point, medians are represented by small squares while lines represent the 95% probability interval. These 
intervals are shown in ascending order by median in each plot.
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TABLE 3. Estimates of total traded shark fin weight by shark type (traders' nomenclature) and fin position based on Hong 
Kong auctions held from October 1999 to March 2001.  Model output has been divided by 1.5 to express figures 
on an annual basis.  

  Mean weight (95% probability interval) (kg)                   

Traders' market category Dorsal Fins Caudal Fins Pectoral Fins Unidentified Fins      

Ya Jian 40 682 34 126 137 045 2 203
 (33 820–48 383) (27 191–42 053) (118 337–158 334) (72–6 689)

Qing Lian 7 645 8 282 21 462 465
 (6 254–9 140) (6 975–9 745) (17 789–25 587) (0–1 399)

Wu Yang 9 834 9 685 32 050 558
 (8 471–11 378) (8 306–11 241) (28 409–36 122) (100–1 465)

Hai Hu 4 018 3 811 11 846 346
 (3 273–4 895) (3 035–4 713) (9 915–14 035) (104–825)

Bai Qing 5 750 4 431 11 600 16 978
 (4 657–6 995) (3 324–5 685) (8 681–14 946) (13 184–21 293)

Ruan Sha 376 313 1 036 112
 (225–587) (165–527) (634–1 599) (13–385)

Chun Chi 6 657 6 475 15 640 25 986
 (5 552–7 943) (5 403–7 774) (12 676–19 111) (22 260–30 131)

Gu Pian 2 245 2 134 6 084 10 334
 (1 685–2 907) (1 539–2 778) (4 528–7 919) (8 298–12 749)

Wu Gu 7 927 7 697 20 656 916
 (6 576–9 402) (6 326–9 249) (17 003–24 885) (466–1 825)

Sha Qing 5 052 4 012 11 910 19 938
 (3 976–6 245) (2 913–5 233) (8 923–15 277) (16 023–24 280)

Liu Qiu 4 766 4 181 12 676 244
 (4 017–5 625) (3 417–5 048) (10 580–14 946) (0–735)

Other 101 645 95 275 211 717 226 837
 (92 130–112 330) (85 840–105 717) (184 300–242 198) (198 008–258 850)

largest proportions were Chun Chi (4.7 %) comprising 
at least two species of hammerheads (Sphyrna sp.), and 
Wu Yang (4.4%), thought to correspond to silky shark 
(Carcharhinus falciformis) and other visually similar Car-
charhinid fins (see Table 1). Other fins comprised ~54% 
of the total traded weight of 1 176 tons per year. These 
included other distinct market categories not included in 
this study, as well as fins, which may actually belong to 
one of the eleven modeled-categories but described as 
unidentified fins on the auction sheets. The probability 
interval for the total traded weight over a one-year period 
extends from 1 108 to 1 247 tons. 

Discussion

The results from the present study can be extrapo-
lated to the entire quantity of shark fins transiting Hong 
Kong (i.e. including unauctioned fins), and to the global 
fin trade. Furthermore, these results can be used to esti-
mate the numbers of sharks represented by these traded 
weights. For interim reference purposes only, we present 
simplified assumptions, which can be applied to achieve 
rough approximations of quantities of interest. Estimation 
of these quantities is currently being implemented in a 
probabilistic framework.
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TABLE 4. Estimates of total traded shark fin weight by shark type (traders' nomenclature) and overall for Hong Kong auctions 
held from October 1999 to March 2001.  Model output has been divided by 1.5 to express figures on an annual basis.  
All quantities have been stochastically simulated and thus individual categories may not sum to the total given in the 
last row.  

Traders' Market   Mean Traded 95% Probability Interval Percentage of 95% Probability Interval for
    Category Weight (kg)             for Mean weight (kg) Overall Total  Percentage of Overall Total

Ya Jian 214 096 190 791–240 021 18.21 16.58–19.95
Qing Lian 37 852 33 465–42 900 3.22 2.84–3.65
Wu Yang 52 133 47 738–57 092 4.44 4.02–4.89
Hai Hu 20 023 17 422–23 018 1.70 1.47–1.96
Bai Qing 38 763 33 304–44 634 3.30 2.84–3.81
Ruan Sha 1 837 1 221–2 672 0.16 0.10–0.23
Chun Chi 54 754 49 149–61 043 4.66 4.17–5.21
Gu Pian 20 797 17 640–24 329 1.77 1.50–2.07
Wu Gu 37 191 32 655–42 335 3.16 2.76–3.60
Sha Qing 40 924 35 433–47 012 3.48 3.02–3.99
Liu Qiu 21 865 19 220–24 905 1.86 1.63–2.12
Other 635 836 584 630–690 670 54.06 51.77–56.26

Total Traded Weight 1 175 712 1 107 975–1 247 480 NA NA

The point estimate of annual auctioned weight of 
1 176 tons compares with an independent estimate of 
5 930 tons of fins imported to Hong Kong in 2000. This 
independent estimate is the reported quantity (Anon., 
2001), adjusted for water content of frozen fins and double 
counting of fins re-imported from Mainland China after 
thawing (Clarke et al., in press). This suggests that the 
results presented in Tables 3 and 4 represent ~20% of 
the shark fins traded through Hong Kong. If, as believed, 
Hong Kong controls about half of the world shark fin 
trade (Clarke, MS 2002), then the modeling undertaken 
for the present study was performed on a sample of ~10% 
of the global market.

These figures assume that a sample drawn from 
auctioned fins is representative of the shark fin market as 
a whole. However, it is possible that auctioned fins have 
a potentially higher value than unauctioned fins, and that 
is the reason they are offered to the highest bidder on the 
open market. Hong Kong shark fin traders exhibit a pref-
erence for fins which contain longer, thicker and denser 
fin rays (Fong and Anderson, 2000; Clarke, pers obs); 
therefore, larger fins of high value species may occur more 
frequently in the auction dataset. Nevertheless, many very 
small, poor quality shark fins have been observed at Hong 
Kong auctions. It is not possible to conclusively address 
this issue from existing information. 

Another concern is the number of sharks represented 
by traded fin weights. To illustrate the utility of the mod-
eling results, simplified assumptions based on conversion 

factors from the literature can be applied to the estimates 
of Ya Jian fins presented in Table 4. Preliminary genetic 
testing of a small sample of Ya Jian fins from the Hong 
Kong market (n = 12) has confirmed the species identity 
as blue shark (Prionace glauca) (Shivji et al., 2002). 
This species is thought to be one of the most abundant 
and prolific of pelagic sharks (Cortés 2002; Smith et al., 
1998). Two conservative assumptions are adopted from a 
previous study (Clarke and Mosqueira, 2002):

1. Dried fin weight is 2% of total weight of the shark 
when landed (Rose, 1996; McCoy and Ishihara, 1999; 
Anderson and Ahmed, 1993).

2. Small sharks have an average weight of 20 kg and 
larger sharks have an average weight of 40 kg (based 
on various datasets including Bonfil (MS 1994).

In addition, based on existing information it is as-
sumed that the auction sample from Hong Kong represents 
10% of the global trade (see above). Applying these as-
sumptions to the quantities of Ya Jian fins in Table 4 as 
follows:

 low estimate = (214 096 kg per year  × 
0.02-1 × 10)/40 kg

and
 high estimate = (214 096 kg per year  × 

0.02-1 × 10)/20 kg

indicates that between 2.7 and 5.4 million blue sharks are 
represented in the shark fin trade each year. 
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Because this estimate is based on simplifying as-
sumptions, ongoing research will extend the Bayesian 
algorithm, both within the existing models and in an 
additional model calculating the number of sharks repre-
sented, for each shark type-fin position combination. One 
enhancement will involve using probability distributions, 
rather than point estimates, when transferring the output 
from Model A to Model B. In addition, another model 
will be developed (Model C) to convert shark type- and 
fin position-specific weights in Table 2 into the number of 
sharks represented. In this model, fin position comparisons 
between dorsal- and caudal-based estimates, where one 
fin per shark is contributed, are expected to show a strong 
similarity. Ideally, these estimates will be, in turn, nearly 
equivalent to 50% of the estimates based on pectoral fins, 
where two fins per shark are contributed. 

Existing market databases embody substantial uncer-
tainties, which can be only partially addressed through 
even the most advanced statistical modeling techniques. 
Therefore, trade-based assessments of the total take of 
fishery or wildlife species, such as those described in 
this paper, are not a substitute for effective monitoring 
at the point of capture or landing. Although shark catch 
reporting and independent monitoring requirements are 
increasing incrementally with time, even in the best man-
aged fisheries they still fall far short of addressing the 
question of whether vulnerable shark species are being 
overexploited. For this reason, further development and 
refinement of trade-based methods should be pursued 
as an important complement to ongoing and improved 
future management systems for shark resources. In the 
short-term, targeting monitoring efforts toward trading 
centres, particularly when major entrepôts monopolize the 
flow of the product from numerous locations worldwide, 
may be the most cost-effective means of gathering a large 
amount of meaningful data. Obtaining accurate trade data 
on an ongoing basis will require the cooperation of both 
governments and business people, which should thus be 
encouraged with incentives. Working from both the fish-
ery and market ends of the supply chain can provide new 
insights for management and facilitate the sustainable use 
of shark resources. 
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