http://journal.nafo.int

J. Northw. Atl. Fish. Sci., Vol. 33: 81-113

Estimation of Male Reproductive Success of Marine Fishes

Edward A. Trippel
Fisheries and Oceans Canada, Biological Station
St. Andrews, New Brunswick E5B 2L9 Canada

Abstract

The subject of reproductive potential of fish populations is dominated by studies on the female
gender. Studies on male reproduction are relatively few, but have increased in number during the
previous decade. The objectives of this contribution were to describe and quantify the reproduc-
tive traits that make up the viable sperm production of a population. Some of these reproductive
traits were easily measured from wild fish (e.g., mature testes weight), and others were more easily
measured on captive fish (e.g., fertilization potential and sperm motility). Results of laboratory and
field studies were then integrated to generate estimates of viable sperm production of a fish stock.
A number of experimental protocols have been employed over the years to assess male fertility.
The strengths and weaknesses of the different experimental approaches were reviewed and appro-
priate recommendations given towards establishing standardized protocols. Although the review is
broad in nature, and includes references to a number of marine fishes, it concentrated on exploited
species that occur in the North Atlantic and Baltic Sea within the taxonomic groups gadoidae,
pleuronectoidae and clupeidae (Clupeiformes). In addition, published data on male reproductive
traits of species in these taxa were tabulated and summarized. The terms of interest included sex
ratio, maturity state, testes weight, sperm fertilization potential (artificial fertilization and paired
mating), sperm density, sperm motility and paternal effects on early life history traits.

An equation for determinate spawners was described that quantifies a population's viable sperm
production using data on adult body characteristics and associated quantity and quality of sperm.
The equation was used to establish time series of viable sperm production for Atlantic cod (Gadus
morhua) of Newfoundland and Labrador. Results indicated on average 1 600 billion viable sperm
were released to produce one recruit at age 3 years but with substantial variation among years in
relation to changes in stock composition and growth as well as stock size. Distinct peaks in the
number of viable sperm in 1981 and 1986 corresponded to distinct peaks in the number of age 3
recruits in those same years.

Key words: Atlantic cod, fertilization potential, genetics, larvae, mating success, maturity, pater-
nal effects, spawning, sperm competition, sperm density, sperm motility, stock repro-
ductive potential

Introduction

The subject of reproductive potential of fish
populations is dominated by studies on the female
gender. Studies on male reproduction are relatively
few, but have increased in number during the previ-
ous decade. The concentration on female processes
within a population is obvious, given they control the
number of eggs produced and its potential cohort
members. Quantity of spawned eggs has been posi-
tively correlated with maternal length, age and nutri-
tional condition (Bagenal, 1973; Kjesbu ef al., 1991,
1996). Variability in size and quality of eggs influ-
ences early life success and presumably recruitment
(Blaxter and Hempel, 1963; Bengtson et al., 1987,
Chambers, 1997; Pepin et al., 1997; Trippel, 1998;

Lambert et al., 2003). What then is the male's role in
determining recruitment success? In the extreme case,
if there were no males, no eggs would be fertilized. Is
population sperm production and the availability of
spermiating males always sufficiently abundant to
fully fertilize each female's egg batch (Gilkey, 1981;
Markle and Waiwood, 1986; Howell ef al., 1991;
Marconato ef al., 1997)? Mating strategies of species
differ and these questions may be inter-related with
spawning behaviour, such as breeder dominance,
spawning shoal structure, promiscuity, and fertiliza-
tion tactics (Stockley et al., 1997; Takborsky, 1998).
Although to assess mating strategies in wild spawn-
ing assemblages is important, it is beyond the scope
of this contribution and in itself is a relatively
unstudied area of fishery science (Shapiro and
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Giraldeau, 1996). This contribution will focus on male
reproductive potential with the intention of develop-
ing an index or measure of reproductive potential that
could be used in place of male spawning stock biomass
in stock-recruitment studies (Marshall et al., 1998;
Trippel, 1999; Cardinale and Arrhenius, 2000).

The objectives of this contribution are to describe
and quantify the reproductive traits that make up the
viable sperm production of a population. Some of these
reproductive traits can be easily measured from wild
fish (e.g., mature testes weight), and others are more
easily measured on captive fish (e.g., fertilization
potential and sperm motility). Results of laboratory
and field studies can then be integrated to generate
estimates of viable sperm production of a fish stock.
A number of experimental protocols have been em-
ployed over the years to assess male fertility. The
strengths and weaknesses of the different experimen-
tal approaches will be reviewed and appropriate rec-
ommendations given towards establishing standard-
ized protocols. Although the review is broad in na-
ture, and includes references to a number of marine
fishes, it will concentrate on exploited species that
occur in the North Atlantic and Baltic Sea within the
taxonomic groups gadoidae, pleuronectoidae and
clupeidae (Clupeiformes). In addition, published data
on male reproductive traits of species in these taxa
will be tabulated and summarized. The terms of in-
terest include sex ratio, maturity state, testes weight,
sperm fertilization potential (artificial fertilization
and paired mating), sperm density, sperm motility and
paternal effects on early life history traits. At the end
of the paper, an equation will be presented that inte-
grates several of these male traits to compute total
viable sperm production of a fish population. An ex-
ample that applies available data on Northwest At-
lantic cod (Gadus morhua), in particular that of the
Newfoundland and Labrador stock, is presented.

Experimental Techniques to
Evaluate Male Reproductive Potential

Sperm Fertilization Potential

Given the shifts in fish populations towards
earlier ages and smaller sizes at sexual maturity in
recent years (Fig. 1) (Trippel, 1995; Trippel et al.,
1997a; Cardinale and Modin, 1999) and, in some
cases, reduced nutritional condition (Lambert and
Dutil, 1997a; Marshall et al., 1999; Ritz and Lloret,
2003), is it possible that the ability of spermatozoa to
fertilize eggs has also become reduced, and that
relatively fewer eggs are being fertilized? Do only

specific segments within a stock have sperm good
enough to fertilize eggs?

Apart from the morphological and energetic
characteristics of spermatozoa (e.g., head size,
adenosine triphosphate (ATP) storage levels and
biochemical composition of the semen; Billard, 1986;
Jamieson, 1991; Lahnsteiner ef al., 1996; Lahnsteiner
and Patzner, 1998; Glogowski er al., 1999) it is of
use and perhaps more relevant to simply evaluate
whether sperm vary in their capacity to fertilize eggs
(Figs. 2 and 3). This type of experiment can be
conducted at sea or in the laboratory, and assists in
gauging relative sperm viability among, for instance,
virgin and repeat-spawning, scrawny and plump, or
young and old males. If a gradient of fertilization
capacity exists in relation to a body dimension, the
relationship could be applied to the male segment of
a stock and yield an appropriate disaggregated
weighting of reproductive potential (Trippel, 1999;
Murawski et al., 2001).

Fertilization trials in diluted semen solutions

a) Selection of males and short-term gamete
storage

Experiments with sperm should begin as soon as
possible after stripping, at least within the first 6—8
hr, as sperm quality declines during the course of an
experiment. After eight hours, there is a greater risk
that storage time could reduce sperm quality (i.e.,
related to many factors such as species, initial quality
and storage conditions). In rainbow trout
(Oncorhynchus mykiss), sperm quality and
fertilization ability were already reduced after 2 hr
storage (Lahnsteiner et al., 1997). Ideally, controls
should be conducted at the beginning, middle and end
of an experiment to test for a decline in sperm quality.
Care should be taken not to include urine in semen
samples, as this can activate sperm motility (region
around the genital pore should be wiped dry before
expressing milt and catherization of ureter prior to
stripping in some cases is also recommended) (Rana,
1995; Dreanno et al., 1998). Urine- and feces-
contaminated samples should be discarded. Syringes
may also be used to collect semen, their volume
dependent on species and experimental design. Semen
(defined as sperm plus seminal fluid) should be stored
in clean, dry beakers or tubes and kept cool, either on
ice or at the desired temperature at which the
experiment is conducted. Colder temperatures will
maintain quality longer, though this could have an
impact on motility when sperm are subsequently
mixed in water of a higher temperature (Vladic and
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Fig. 1.

semen, August 2001. Source: E.A. Trippel.

Jaervi, 1997). Containers holding sperm should be
covered (e.g., with foil or waxed film) to prevent
accidental entry of water and pre-mature activation
of some portion of the storage vessel's sperm. Egg
collection and their storage should be handled
similarly (see Thorsen ef al., 2003). To ensure a female
has eggs of good quality, a subsample of the stripped
eggs should be placed into a beaker containing
seawater to check for strong positive buoyancy
(Kjersvik et al., 1990) (particularly for fish species
that spawn non-adhesive eggs). Eggs should be
discarded if they were not easily expressed from the
female or do not float to the incubator's surface. Eggs
should be viewed under a stereomicroscope to evaluate
whether they have a clear cytoplasm or a dark opaque
contorted center. If a sample contains a high
abundance of the latter, the female's eggs should be
discarded, since these irregular oocytes cannot be
fertilized (Kjorsvik et al., 1990; Thorsen et al., 2003).
Eggs of moderate quality could be used if this is the
intent of the experiment, for example, to examine male
fertilization success in relation to egg quality. Controls
should be conducted to examine for possible declines
in egg quality over the experiment. To compensate

Photograph of a 22 cm, 65 g precocious male cod (Gadus morhua) of the Central Baltic Sea and its stripped

for changes in gamete quality, replicates of different
crosses could be conducted at random over the
experimental period.

b) Experimental design- semen dilutions

The objectives of the experiment need to be clearly
defined and the appropriate statistical analyses
planned. To examine the fertilization capacity of males
of different reproductive history (for example, first-
time vs repeat-spawners), an appropriate number of
males of each type need to have their sperm extracted
and stored (Trippel and Neilson, 1992). The limited
time allotted to conduct experimental crosses often
influences the number of fish used. Each male should
be replicated five times at minimum, as considerable
variability often exists and the quality of one sample
of embryos might deteriorate or be destroyed due to
an experimental mishap. More replicates often
decrease the within-male variance component of
statistical analyses and provide greater ability to detect
inter-male differences (for example, among 10 males
ranging in condition). Availability of eggs can
however limit the number of replicates possible.
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Fig. 2.

Photograph of ripe testes of an adult Atlantic cod (Gadus morhua)

(A) blood vessel in membrane of testis; (B) translucent border at
distal edge). Source: Histology of the Atlantic Cod, Gadus morhua:
An Atlas — Fisheries and Oceans Canada, 1990. Reproduced with
permission of the Minister of Public Works and Government Services

of Canada, 2003.

Semen:seawater dilutions used to examine sperm
fertilization capacity have spanned from 1:1 to 1:1000
for studies on Northwest Atlantic cod, of which 1:500
and 1:1000 were the most suitable (Trippel and
Neilson, 1992). Dilutions of 1:250 or denser led to
>80% fertilization success, yielding little among-male
variability. Similar difficulty in achieving a broad
range of fertilization rates was experienced in
experiments with Atlantic herring (Clupea harengus)
(Geffen, 1999) and Atlantic halibut (Hippoglossus
hippoglossus) (9.4 x 105 — 4.6 x 10% spermatozoa/
egg, Tvedt et al., 2001). Using very high dilutions,
for example, >1:1000 for cod, may generate very low
fertilization rates or many zero values, also making
among-male comparisons problematic. Hence, the

number of spermatozoa per egg to be used in
fertilization experiments is related to species and
previous trials.

The study design chosen to estimate sperm
fertilization potential does not have to be confined to
one dilution but, based on gamete supply, can be
extended to test sperm fertilization potential over a
range of dilutions or sperm concentrations (Trippel
and Neilson, 1992). Once the experimental design is
finalized, a consistent method of introducing sperm,
mixing it with eggs, and removing excess sperm
should be adopted. The entire experiment should be
conducted in a controlled temperature room. A good
method of extracting sperm from the main holding
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beaker is to use a 100—-1000 1 (£1 1) automatic
micropipette (in which volume is digitally controlled).
The tip aperture of a disposable plastic pipette can be
enlarged by cutting off a portion which facilitates the
entry of viscous semen. Five 250 ml beakers, or other
appropriate sized vessels, containing a predetermined
volume of seawater of the desired temperature should
be set up for each male. A pre-established volume of
semen to attain the semen:seawater dilution is
dispensed into a beaker (e.g., 1:500 dilution = 500
4 1semen in 250 ml seawater) and the contents stirred
with a glass rod for a brief fixed duration (e.g., six
revolutions (~3 sec)). Eggs (~250-350) should be
immediately added using a larger micropipette (1000—
5000 w1, £10 u 1) with the volume pre-calculated for
each female depending on egg diameter. This mixture
of eggs, semen and water is then gently swirled (~5
sec) and allowed to stand for 1 min. The sperm
solution is then drained off, with care taken not to
damage the sensitive eggs. Fresh filtered (0.2 u m),

(A) Photograph of head of sperm cell of Atlantic cod (longitudinal section). A: nucleus, C: nuclear membrane,
D: proximal centriole, E: distal centriole, and F: mitochondrion. (B) Photograph of micropyle of an Atlantic
cod egg. A: pore on mound, B: ridge of inner surface of micropyle, and C: rim of micropyle. (Source: Histology
of the Atlantic Cod, Gadus morhua: An Atlas — Fisheries and Oceans Canada, 1990. Reproduced with permission
of the Minister of Public Works and Government Services of Canada, 2003.)

UV-sterilized seawater of the appropriate salinity and
temperature is then added to the beaker (or the eggs
are transferred into a new beaker containing fresh
seawater). The process is repeated independently for
each test sample. Some species, populations, and often
certain individuals may have very sensitive eggs.
Should this be the case, resting them on a nylon mesh
(e.g., mesh size 1-mm square or less), as the water in
the beaker is exchanged, can rupture their chorion.
Because of these restricting circumstances, it is wise to
conduct preliminary experiments to develop
appropriate techniques that can be successfully
deployed for a particular species or population when
conducting a planned experiment (e.g., Marconato et
al., 1997). A rapid and consistent method of removing
eggs from the original test dilution is necessary (unless
one wants to incorporate extended fertilizations and
longer sperm:egg interaction times into the design).
Unfortunately, some handling and artificial conditions
will occur. As long as these are maintained constant,
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among treatment inter-male comparisons should
remain valid. Exploration of the two-step dilution
procedure used in the estimation of sperm density
(e.g., Shangguan and Crim, 1999) is also worth
pursuing when preparing diluted semen mixtures for
egg fertilization trials.

Time to first cell division is species and water
temperature dependent and normally occurs within
12 hr after fertilization (Fridereisson, 1978; Kjorsvik
and Lonning, 1983), making it feasible to evaluate
fertilization success the next day. Eggs should be
strained from each 250 ml beaker and gently placed
in a small Petrie dish. A video recorder or digital
camera attached to a stereomicroscope (magnification
25-40x) should be used to facilitate recording of, for
example, 100 samples of ~250-350 eggs each (i.e., if
the study involved 20 crosses each with 5 replicates).
Fertilization success can be determined from the
recorded images at a later date. When estimating
fertilization success it is important to exclude irregular
eggs (i.e., deformed, enlarged, or those that are not
clear). These eggs could be malformed or be under or
over-ripe and are inappropriate to include when
appraising sperm viability (Nissling et al., 1998).
Commonly, eggs with 2—4 cells or more are considered
fertilized as opposed to activated, i.e., eggs with one
germinal cell but without cell cleavage (Howell ef al.,
1991) and eggs without cells (Nissling and Westin,
1997). Each male's ability to fertilize a female's eggs
is represented by the average of the replicates.

If hatching success is of further interest, the eggs
following videotaping could be returned to the 250
ml beakers for subsequent incubation to hatch (~15-
20 days and is a function of species and water
temperature) (see Thorsen et al. (2003) for
recommended techniques to incubate marine fish
eggs). For Northwest Atlantic cod, handling in this
way did not result in egg mortalities (Trippel and
Neilson, 1992; Trippel and Morgan, 1994a). Other
experimental options would have to be developed in
cases where losses due to handling stress are
significant. Note, in place of beakers, 1 I hatching
cones with flow through water could be used for egg
incubation as dead eggs that settle to the bottom could
be drained without disturbing the suspended viable
eggs. Flow-through systems are more expensive and
some loss of flexibility occurs when they are adopted.
For example, if a larger experiment is developed there
may not be enough hatching cones to accommodate
all crosses and replicates. Additional beakers are
simpler to purchase and set up. Hatching success also
has been monitored of individual eggs placed in I ml

cells in small plastic plates (Panini et al., 2001;
Thorsen et al., 2003). This avoids contamination
among eggs and introduces statistical advantages as
well as some disadvantages (e.g., inability to rear large
numbers of larvae).

Atlantic halibut egg incubation requires elevated
salinity to maintain eggs in the water column.
Incubators commonly are 250 1 (Terjesen ef al., 1998)
and incubation of individual eggs for lengthy periods
in small cells is not possible. Herring have adhesive
eggs, and their fertilization is conducted by gently
spreading them onto glass plates (Blaxter and Hempel,
1963). The glass plates are then submerged in seawater
containing the appropriate sperm density for a set
period (e.g., 30 min), removed, and then incubated in
a tank containing fresh seawater (Rosenthal et al.,
1988; Geffen, 1999).

Sperm Density

Male fertilization potential is dependent on semen
quality or, more specifically, sperm number per unit
volume of semen (density) and sperm motility. Sperm
density and motility can be examined separately to
evaluate their relative contribution to fertilization
potential.

Individual males in a population vary in sperm
density (Trippel and Morgan, 1994a). In fertilization
trials these inter-male differences can be maintained
if one uses the same semen dilution for each male
(e.g., 1:500). However, if one wants to achieve equal
sperm density among males in a fertilization trial
(thereby facilitating the comparison of individual
sperm cell performance) then the sperm density (i.e.,
number per ml of semen) of each male should be
measured and the volume of semen used in crosses
adjusted accordingly. Thus, sperm density estimates
are meaningful in fertilization trials in which it is
important to quantify the number of sperm per egg.
Sperm density in conjunction with ejaculate volume
is also used to estimate total sperm production by an
individual during a spawning event or for the entire
spawning season if spawning events are summed.

Two techniques are commonly used to measure
sperm density: (i) spermatocrit and (ii) sperm counts
of diluted semen sub-samples of known volume.
Spermatocrit is a measure of the proportion of semen
occupied by packed sperm cells in microhaematocrit
tubes (75 mm length, 1.1-1.2 mm internal diameter)
after high speed centrifuging (10 min at 7500 rpm)
(Bouck and Jacobson, 1976) (Fig. 4). Two spermatocrit
samples should be completed per male, and if they
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differ by >10%, a third sample should be done.
Experience has shown that replicate samples are often
within 2-3% of each other.

In cod, sperm density has been estimated by
counting the number of sperm cells in a modified
Neubauer haemacytometer and then as a proportion
by estimating the number per ml. For example, Rakitin
et al. (1999a) diluted seawater 500-fold and counted
cod spermatozoa in 0.02 w1 aliquots (n = 3) at 400x
magnification. These investigators showed, however,
that haemacytometer derived estimates of cod sperm
density correlated poorly with spermatocrit. A Coulter
Multisizer particle analyzer (Coulter Electronics) has
also been used to measure cod sperm density (Rakitin
et al., 1999a). This technique was superior to
haemacytometer counts. Dilutions were greater (5 x
103-fold), spermatozoa were counted in 1 ml aliquots,
and lower variation among replicates was achieved
(Rakitin et al., 1999a). The relationship between cod
spermatocrit and sperm density (Coulter Multisizer)
was 2= (.75, whereas using a haemacytometer it was
r>= 0.13. The better fit could be due to the large
volume of dilution per sample of semen analyzed using
a Coulter Multisizer. The small scale heterogeneity
in the diluted mixture probably did not influence the
accuracy of density estimates made with a Coulter
Multisizer as it might have with a haemacytometer.

Spectrophotometry has been used to successfully
estimate sperm density of turbot (Scophthalmus
maximus) (Suquet et al., 1992a) and of several
freshwater fish species (Ciereszko and Dabrowski,
1993). For turbot, a Malassez's cell was used to
estimate sperm density after a 10 min decantation time
and, although useful, proved very time consuming
(2 hr per individual fish) (Suquet et al., 1992a).
Though not encountered in cod, problems occurred
for turbot in obtaining a significant spermatocrit-
sperm density relationship (Suquet et al., 1992a). The
authors consequently relied solely on spectro-
photometry to derive sperm density estimates for this
species. However, a significant positive relationship
was reported between halibut sperm density and
spermatocrit (Tvedt er al., 2001). Differences among
studies may be related to the ability to achieve
homogeneity in diluted sperm concentrations. A two-
step dilution procedure has proven to be useful in the
estimation of sperm density of winter flounder
(Pseudopleuronectes americanus) (Shangguan and
Crim, 1999) and yellowtail flounder (Liminanda
ferruginea) (Clearwater and Crim, 1998). Further
exploration of the two-step dilution procedure is
recommended.

Sperm Motility

A numerical scale has been commonly used to
assess sperm motility. For example, 0 = non motile,
1 = <5% motile, 2 = 5-29% motile, 3 = 30-79%
motile, 4 = 79-95% motile and 5 = >95% of sperm
motile in a sample. Further distinction of the non-
motile category is occasionally made; vibrating (but
not exhibiting forward motion) and those that are
completely motionless (e.g., Westin and Nissling,
1991). Westin and Nissling (1991) also measured the
duration (in min) of each phase (i.e., moving fast,
moving slow, vibrating or no activity). These
categories permit a viewer to rapidly score a sample
of freshly diluted semen. Videotaping images of
swimming sperm, on the other hand, provides a
permanent record that can be evaluated subsequently
and by other viewers. Sperm velocity (ux m/s) from
taped images can be estimated by measuring distance
travelled by individual sperm cells (i.e., measuring
distance travelled in a certain time (Billard and
Cosson, 1992; Trippel and Neilson, 1992).
Approximately 100 spermatozoa should be tracked per
sample and it is a time-consuming process. Computer-
assisted sperm analysis (CASA) to assess the effects
of pollutants on fish sperm has been successfully
employed to estimate sperm swimming speed (Toth
et al., 1995). This device automatically assesses speeds
of high numbers of sperm and provides a digital data
output (Kime et al., 1996). High-speed video-
microscopy has been used to study the flagella-beating
frequency of fish spermatozoa (Cosson et al., 1997).

Longevity is another vital sperm characteristic
(Fig. 5). Many marine fish species have lengthy
periods of sperm motility lasting several minutes
(Suquet et al., 1992a; Trippel and Morgan, 1994b;
Geffen, 1999; Ciereszko et al., 2000) with activation
of individual spermatozoa perhaps being staggered
over time (Geffen, 1999). Sperm longevity can be
evaluated by periodically sampling a semen:seawater
mixture and measuring sperm motility for 1 min. The
interval between sampling is flexible given the
limitations of labour and equipment. For some species,
taping motility can be done every 10 min given that
spermatozoa may still be active after 1 hr (Trippel
and Morgan, 1994Db).

Sample preparation

Semen sampled for motility estimates should be
used within 6—8 hr after stripping. Even though
fertilization capacity continues for sperm stored on
ice or in chilled oxygen filled syringes for much longer
(24-48 hr, Billard, 1981), it is desirable to assess
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Fig. 4. Photograph of microhaematocrit tubes filled with semen being

loaded into a centrifuge plate. Relationship between
spermatocrit and age of Grand Bank cod collected in 1991.
(Reproduced from Trippel, E .A., and M. J. Morgan. 1994.
Age-specific paternal influences on reproductive success of
Atlantic cod (Gadus morhua) of the Grand Banks,
Newfoundland. /CES Mar. Sci. Symp., 198: 414-422.
Copyright 1994, with permission from International Council

of'the Exploration of the Sea.)

motility of fresh sperm which more closely represent
natural spawnings (Billard et al., 1993). If possible,
controls should be carried out at the beginning, middle
and end of the trials to assess whether storage time
introduces a negative bias in the results. Sperm
motility should be assessed of milt stored at the desired
temperature and void of urine and water. In special
cases where it is desirable to use a urine contaminated
sample it might be possible to remove the urine with
a pipette (because urine and milt remain as two

separate phases) (Rakitin et al., 1999a), though urine
is rather difficult to remove from semen in most
instances. Semen has also been extracted from the
testes of dissected fish without any deleterious effects
on sperm performance compared to stripped sperm
(Billard et al., 1997; Lahnsteiner et al., 1998).

It is recommended that motility assessments be
conducted in a controlled temperature room.
Alternatively, a compound microscope fitted with a
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(A) Relationship between fertilization rate and time sperm have been
previously exposed to seawater for Atlantic cod. Female 1: 75 cm crossed
with a male 67 cm repeated in triplicate at each time period (mean of
three values shown); Female 2: 50 cm crossed with five males 61-67
cm; Female 3: 52 cm crossed with nine males 48—67 cm. (B) Percent
occurrences of Atlantic cod sperm having different swimming velocities
at seawater exposure periods of 0, 60 and 120 min. The darkened bars
represent sperm which were immotile, nonvibrating, and the cross-
hatched bars represent immotile vibrating and motile sperm. n =number
of sperm. (Reproduced from Trippel, E. A. and M. J. Morgan. 1994.
Sperm longevity in Atlantic cod (Gadus morhua). Copeia, 1994: 1025—
1029. Copyright 1994, with permission from the American Society of
Ichthyologists and Herpetologists.)
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stage-cooling device could be used, though one should
be cautious of the effects of air temperature above the
sample. Commonly a 1:250 semen:seawater dilution
has been used to assess motility of cod sperm, where
spermatocrit ranges from 30-70, although a lower
dilution (e.g., 1:100) may also be used (Trippel and
Neilson, 1992). It is advisable that the same dilution
be applied to all males in the study, since level of
dilution has been shown to influence duration of sperm
motility in turbot (e.g., 1:10 vs 1:1000; Suquet et al.,
1992a). Confusing high density sperm recordings
should be avoided and could indicate the need for
thinner dilutions (especially if measuring swimming
speed of individual sperm cells). Long sperm tails
could interfere with each other at high densities,
reducing individual sperm velocity (this phenomenom
may actually occur during egg fertilization). Detailed
description of polyspermy and entry through an egg's
micropyle are given elsewhere (Ginsburg, 1968;
Amanze and Iyengar, 1990).

To prepare a sample for assessment of cod sperm
motility, a pre-determined volume of semen is placed
by micropipette into a beaker with known water
volume to achieve the desired dilution (i.e., 1:250
dilution = 200 1 in 50 ml water) and the sample is
stirred with a glass rod (~3 sec). The tip of the glass
rod is then used to place a drop on the
haemacytometer, a glass cover slip is placed over the
drop, and the sperm are quickly brought into focus at
the desired magnification (e.g., 250—400x). It has been
shown to take 20—30 sec to complete these steps from
initial activation of sperm in water to focus. The sperm
are then videotaped for 1 min. The process is then
repeated in at least triplicate, each sample being
derived from its own dilution. In turbot, sperm motility
has been estimated using dark field microscopy and
stroboscopic illumination conducted with video
recording. A two-step dilution process has been
adopted with a final dilution of 1:1000 as fish semen
is often viscous and difficult to mix with a dilutent
(Chauvaud et al., 1995). The two-step dilution
procedure has also been used on winter flounder
(Clearwater and Crim, 1998), though it was first
proposed by Billard and Cosson (1992) for rainbow
trout in order to trigger a synchronous movement of
100% spermatozoa and to easily observe a small
quantity of cells. Sperm motility of Atlantic halibut
was estimated by Tvedt et al. (2001) by diluting 10 pl
of milt in 1 ml of non-activating solution, and then 1
pl of this diluted solution was pipetted onto a
microscope slide. Activation was achieved by adding
25 ul of seawater and a qualitative score to sperm

motility assigned. Once diluted, milt was held on ice
in a cooler between preparation of slides. Other
investigators of sperm motility have reported sample
preparation periods to post-activation of 0 sec (dilution
prepared on microscope's stage) (Vladic and Jaervi,
1997) and 15 sec (Toth et al., 1995). It is important
to maintain consistency in post-activation times
among samples. For turbot sperm, in order to obtain
a 1:1000 two-step dilution Chauvaud et al. (1995)
mixed 0.5 pl of semen with 49.5 pl non-activating
medium. Then 10 pl of this mixture were immediately
diluted into 90 pul of salt water. This process permitted
the evaluation of motile and non-motile sperm within
a few seconds after activation.

The process of conducting sperm motility
experiments is not always simple. The use of a cover
slip assists with the generation of a thin layer of sperm
across the haemacytometer. The cover slip also
prevents the occular from making direct contact with
the sperm during magnification. It is also possible to
use the edge of a glass cover slip to create a smear or
thin layer across an unmarked glass slide (i.e., no
underlying grid) and qualitatively score the sample.
When focusing, it sometimes becomes apparent that
more than one layer of sperm exists on the slide (e.g.,
cod sperm head length ~5 g m) (Fig. 3A). Allowing
time for decantation of sperm would result in a single
layer of cells, but this delay would introduce a negative
bias on sperm motility estimates and is not
recommended. It is important to remain focused on a
single plane during videotaping. Occasionally
unidirectional flowing of sperm occurs through the
field of view and is easily recognized (created by
movement of the solution), making sperm motility
estimates problematic. Care should be taken to avoid
these samples. If this is not possible, a frame of
reference should be used to estimate self-propelled
motility. Clean dry glassware should always be used
for each sample to avoid contamination by other sperm
and water. A frame counter (video timer, +£0.01 sec)
should be used to denote which tape segments refer
to each sample. Samples from various males should
be performed randomly to avoid the possible effect of
milt ageing on motility (Ciereszko et al., 2000).

Paternal Effects on Reproductive Output in Paired
Mating

Considerable effort has been made in recent years
to measure maternal factors affecting fecundity, egg
size and fertilization success of gadoids that spawn
freely in captivity (Hislop et al., 1978; Kjesbu et al.,
1996; Trippel, 1998; Thorsen et al., 2003). Paternal
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factors may have partly influenced the results of these
experiments (especially related to fertilization).
Further investigation of male effects in free spawning
adult pairs is warranted to appropriately gauge results
derived from maternal-based experimental designs.
The following describes guidelines that tend to
minimize introduced male effects in paired mating
studies.

Broodstock collection and husbandry

Knowledge gathered on fecundity and egg
viability from captive adult pairs has been critical to
the estimation of reproductive potential of natural
populations. Further research in this area should be
conducted using fish collected as juveniles using
handlines or trawls, rather than using fish cultivated
from eggs (see Thorsen et al., 2003). Their diet while
in captivity should be similar to the wild, i.e., in the
case of Northwest Atlantic cod, a diet of herring,
capelin (Mallotus mallotus), squid (llex sp.) and
shrimp (Pandalus sp.). Prepared dry and moist pellet
diets that require less labour are also options, though
they are more removed from their natural diet, and
due to a relatively high fat content, lead to enlarged
livers (Nanton et al., 2001; Lambert and Thorsen,
2003). Fish should be tagged (external or internal) to
maintain record of their growth and reproductive
history while in captivity. Mixed sex conditions should
be maintained in large holding tanks during the non-
spawning period to accommodate the positive
maternal effect on sperm motility (Suquet et al.,
1992b). Distribution of adult pairs to smaller
spawning tanks is dependent on the experimental
design and commonly occurs 2—3 weeks prior to the
onset of spawning (Fordham and Trippel, 1999). Fish
should be anaesthetized and initial length and body
weight recorded and milt expressed to verify sex and
gauge sexual readiness. Ultrasound has also been
proven to be a useful non-lethal tool to determine sex
and ripeness (Martin-Robichaud and Romments,
2001). A few days after transfer to spawning tanks,
fish should be free of symptoms of fright or stress
(such as dark skin blotches) or immobility (Billard et
al., 1981). Plasma cortisol levels may be measured to
assess stress level (Barton and Iwama, 1991;
McCormick, 1998; Morgan et al., 1999). Sound
production by gadoids during courtship is caused by
rapid contraction and relaxation of the drumming
muscles attached to the swimbladder (Templeman and
Hodder, 1958; Brawn, 1961a,b; Hawkins and
Rasmussen, 1978; Hawkins and Amorim, 2000) and
the absence of these sounds can help to evaluate
whether a male is stressed. Sound production of
individual male haddock (Melanogrammus

aeglefinus) occurs throughout the spawning period
(day and night), even when isolated with a female
and no other male is present (Bremner et al., 2002).
When monitoring egg production of a female, the
accompanying male should be within 10% of the
maternal length, as size of male relative to female
may influence mating success (Rakitin ef al., 2001;
Bekkevold ef al., 2002). There may be a number of
factors responsible for the failure of eggs to be
fertilized during the lengthy spawning period of a
female (~30—40 days). In the case of the male, one
could examine for the presence of swimming activity.
Males normally exhibit greater swimming activity
than females and often circle the tank bottom
(Hawkins and Amorim, 2000; Rakitin ez al., 2001).
If sound production ceases, it may be a sign that the
male has completed annual spawning (Bremner et al.,
2002). Removing the individual and checking for milt
is another way of checking for cessation of spawning.
However, the absence of milt may not be a true
reflection of its remaining ripeness. Occasionally, milt
is not readily expressed in this way, and the individual
continues to mate when returned to the tank. Creating
a spawning trio, two males and one female, could lead
to additional male effects on the viability and
characteristics of the progeny (i.e., beyond a single
male) (Panagiotaki and Geffen 1992; Rakitin et al.,
2001; Wedekind et al., 2001; Saillant et al., 2001). If
10 females are monitored in 10 tanks, they will each
have a different sire, inevitably introducing some male
effects into the results. Male selection and replacement
therefore need to be carefully considered prior to the
formation of spawning pairs.

For turbot, and many other pleuronectoids,
individuals need to be manually stripped to conduct
pair matings (Chereguini ef al., 1999; Watanabe and
Carroll, 2001). Because sperm volume collected from
stripping is typically low in small flatfishes
(oligospermy), a catheter is often used to take sperm
from the genital pore (as noted for rainbow trout by
Glogowski et al., 2000). Variable spawning success
in flatfishes can be attributed in large part to
inconsistent male performance and inadequate
spermiation (Watanabe and Carroll, 2001). Hormone
treatments have been used to stimulate spermiation
and ovulation in pleuronectoids (Clearwater and Crim,
1998) and consequently gamete collection is more
complicated than for gadoids. Culturists of summer
flounder (Paralichthys dentatus) and southern
flounder (P. lethostigma) used a "light table" to
estimate time of ovulation and used intramuscular
implantation of a slow-release LHRHa pellet into
females to induce repetitive ovulation and spawning
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(Watanabe and Carroll, 2001). In yellowtail flounder,
GnRHa treatment did not have a negative effect on
sperm fertilizing ability, percent hatch or larval
morphology, and it positively influenced sperm
production, milt volume and sperm motility
(Clearwater and Crim, 1998). Additional considera-
tion must be made of handling stress and the effects
of stripping frequency on milt quantity and quality
(Suquet ef al., 1992b). Ability to coordinate time of
stripping with ovulation in flatfish is important so
that eggs do not become over-ripened or released freely
in the holding tank (Devauchelle ef al., 1988). Use of
GnRHa implants lowered sperm density in Atlantic
halibut (Tvedt et al., 2001), whereas hormonal
treatments used to induce ovulation in female summer
and southern flounder were ineffective in inducing
spermiation (Watanabe and Carroll, 2001).

Application of Genetic Markers to Sperm and
Group Mate Competitions

Species-specific genetic markers have become an
important tool in the study of fish population dynamics
and aquaculture (Jordan and Youngson, 1992; Bentzen
et al., 1996; Herbinger ef al., 1997; Wooninck, et al.,
1998; O'Reilly et al., 2002). Molecular genetic
markers used to assign parentage through ontogeny
(parents, spawned eggs, advanced embryos and larvae)
have broadened the type of research that can be
conducted to assess paternal variability in fertilization
success.

Male fertilization success — sperm competition.
Without genetic analyses, one is confined to evaluating
male effects by using milt of individual males to
fertilize eggs of one or more females and incubating
the family replicates separately. Genetic markers make
it possible to simultaneously create and monitor
progeny of several half-sibling crosses (sharing the
same dam but having different sires). For example, a
series of sire pairs could be chosen that differ as
follows: (low vs high condition, virgin vs repeat-
spawning, small vs large body). Rakitin ef al. (1999b)
used sperm of 8 males of contrasting body length to
create paired sperm competitions using eggs of three
females and conducted 10 sets of matings (each in
triplicate). Male condition correlated positively with
fertilization success when the volume of semen was
adjusted to add approximately equal numbers of
spermatozoa from each male (Rakitin ef al., 1999b).
More than two males can also be used, for example
along a gradient of length or condition factor (e.g.,
10—20 males with one or more females). A number of
sperm competition studies have been conducted in

which genetic markers were used to reveal variation
in performance among males (Gile and Ferguson,
1995; Babiak er al., 1998; Rakitin et al., 1999b).
Males can potentially influence embryonic
survivorship prior to hatch, and it is therefore
important to sample zygotes through time. It is
possible to isolate DNA from some species, such as
Atlantic cod and haddock, as early as the 16- and
32-cell stages (J. A. Hutchings and P. T. O'Reilly, pers.
comm.). The number of parental combinations
detected in an egg batch as a function of a randomized
number of genotyped offspring showed that a
minimum of 20 embryos should be analysed to
evaluate parentage (Bekkevold ef al., 2002), however
a greater number yields greater precision in estimates
of relative sire potency.

Sperm density is a principal factor contributing
to male fertilization success. Sperm density differences
among males can be accounted for by measuring
spermatocrit of the intended sires. If one sire has 25%
thicker semen than the other, then 25% less semen of
this sire should be added to the solution into which
eggs are introduced. The final semen:seawater dilution
would account for the differing quantities of milt of
the two males (e.g., in a 1:500 dilution). This is
referred to as the equal density approach and enables
a fairer test of the quality or fertilization capacity of
individual spermatozoa (Rakitin et al., 1999b). An
equal volume approach does not account for inter-male
differences in sperm densities as it uses the same
amount of milt of each male. The equal volume
approach better reflects the semen flowing from two
males during spawning. However, many other
“natural” factors have already been held constant in
the experiment such as ejaculate volume and mating
behaviour (Trippel et al., 1998). Both equal density
and equal volume techniques are of interest, though
if time and gametes are limited, the former is more
significant in the evaluation of sperm quality. In
addition to sperm competitions, fertilization success
should be estimated using sperm of each male
independently (Rakitin ez al., 1999b). This will enable
the independent detection of poor performing males.

Cryopreservation of semen has been established
for a number of teleosts beginning primarily with
salmonids (Scott and Baynes, 1980; Stoss, 1983; Rana,
1995; Glogowski et al., 1999). Despite the need for
further cryopreservation research, the technology
currently exists for long-term storage of male gametes
of selected marine species (Mounib, 1978; Leung and
Jamieson, 1991; Suquet ef al., 2000; Ohta et al., 2001;
Rideout et al., 2003). In turbot, no significant
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differences in fertilization rate, hatching rate, survival
and wet weight of 10 day-old larvae were reported
using fresh or frozen-thawed spermatozoa (Suquet et
al., 1998). However, individual male variability was
noted in cryopreservation of bream (4bramis brama)
sperm (Glogowski et al., 1997). Long-term storage
capacity could provide the opportunity to assemble
sperm from parents of the specific characteristics
desired for an experimental cross. For example, 10
first-time and 10 repeat-spawning males could be
stripped and their gametes stored. It may also be
possible to sample gametes by inducing adults to
spermiate through gonadotropin hormone implants or
injections (Garcia, 1991; Clearwater and Crim, 1998).
Sperm competition experiments could then be
conducted when a sufficiently large egg batch has been
obtained of good quality (or when eggs of more than
one female have been collected if maternal-paternal
interactions are the aim of the study).

Analysis of "male effects" is not restricted to
stripping males and conducting sperm competitions.
For some species, it is also possible to sample freely
spawned eggs in tanks in which two or more males
are held with one female. Parentage of over 51 cod
spawning events of 8 trios (2 males and 1 female)
revealed evidence of size-assortative mating of cod.
Large males that were more than 25% of the length
of the female had low seasonal reproductive success
and only male cod with a body length within 13% of
females fertilized entire egg batches (Rakitin et al.,
2001). Additionally, a large majority of egg batches
of all females had both males contributing to offspring
paternity. This indicated that sire dominance was not
achieved in the captive trios. Monitoring progeny from
larger spawning groups of cod (e.g., 6131 adults)
has been used to examine communal mating behaviour
and whether an alpha-male becomes established
(Jorstad, 1986; Hutchings et al., 1999; Bekkevold et
al., 2002). Behavioural observations and associated
male sound production of haddock has also been
studied in communal spawning tanks (Hawkins and
Amorim, 2000). In Atlantic salmon (Salmo salar),
male fertilization success was influenced by a variety
of factors, including sperm precedence, male size, and
spawning history with sperm limitation likely
influencing individual success (Mjolnerod et al.,
1998). Group spawns resulted in higher egg
fertilization rates compared to mono-male spawns in
bluehead wrasse (Thalassoma bifasciatum; Robertson,
1996), though no difference was noted for cod when
one compared to two males were mated with a female
(Rakitin et al., 2001). Size-dependent reproductive
advantages existed in the Japanese medaka (Oryzias

latipes) where females associated with large males
and, when mate competition was strong, large males
obtained almost every mating (Babiak et al., 1998).

Paternal Effects on Hatching Success, Larval Traits
and Early Life Survival

The effects of male parent on egg hatchability is
an infrequently studied aspect of marine fish early
life history (Trippel and Neilson, 1992; Nagler and
Cyr, 1997). Hatching success has been reported to
range from 30-75% among half-sibling embryos in
Atlantic cod, though the differences were unrelated
to sire length and age (Trippel and Morgan, 1994a)
(Fig. 6). Tests involving first-time and repeat-
spawning males have reported that mean hatching
success was not related to years of reproductive
experience, though first-time spawners exhibited a
greater coefficient of variation in hatching rate
(Trippel and Neilson, 1992). In herring, sperm
motility correlated positively with larval length at
hatch (Evans and Geffen, 1998) which is an
interesting finding in the study of male-influenced
early larval traits (Fig. 7). Sire breeding orna-
mentation was positively correlated with parasite
resistance of embryos in Alpine whitefish (Coregonus
sp.), such that strongly ornamented males sired
offspring that better survived the epidemic during egg
development (Wedekind et al., 2001). Paternal effects
on early life history traits of haddock have also been
recently demonstrated (Rideout ef al., in press).
Consequently, mixing sperm of different males to
assess maternal effects should be avoided. These
studies may have difficulty in accurately assessing
among-female differences, due to potentially
significant male effects and male-female interactions
in the phenotypes, as reported for European sea bass
(Dicentrarchus labrax) (Saillant et al., 2001).

Greater husbandry requirements are needed for
studies on hatching compared to fertilization success.
The period of study is longer (~15-20 days) and
maintaining water quality is important. Husbandry
should be conducted as described for experiments on
maternal influences on egg hatching success (see
Thorsen et al., 2003). Dilute sperm mixtures are not
necessary to produce embryos for hatching
experiments. Fertilized eggs can be created using
concentrated sperm dilutions (e.g., dry fertilization)
which potentially increases the number of fertilized
eggs per sample.

The ability of a sire to shape larval characteristics
and performance is of great interest (Panagiotaki and
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Geffen, 1992; Rideout et al., in press), as maternal
effects are generally presumed to control this early
life stage (Bengtson et al., 1987; Chambers et al.,
1988; Chambers and Leggett, 1996). The male effect
can be studied for several weeks or months as larvae
continue to grow and commence exogenous feeding
and become juveniles. Standardized experimental

methods will be required during larviculture as many
factors could possibly mask underlying male effects.
Studies on size-dependent survivorship (Meekan and
Fortier, 1996) and lipid class composition (Lochmann
et al., 1995) of larval cod of the Scotian Shelf are of
relevance. Continued examination of the male effect
can be done using a large tank (e.g., 5000 1) where
progeny of several sires and dams are pooled. This
may minimize the "tank effect" problem common to
following isolated families in small aquaria (e.g.,
40 I). However, there still may exist some interactions
between families and rearing conditions that influence
survivorship differently according to origin of larvae.
Pooled family rearing is costly due to necessary DNA
analysis, and in itself should also be replicated, which
is rarely done. Studies to monitor the growth and
survival of larvae originating from specific families
of pleuronectoids and gadoids are rare (e.g.,
Chambers and Leggett, 1992; Clemmesen et al.,
2003). It is anticipated that greater gains in this area
will occur as the development of aquaculture breeding
programs for species of these taxa advance over the
next ten years.

Available Information on Male
Reproductive Traits from Field Studies

Sex Ratio, Maturity, Stage of Spawning and
Gonadosomatic Index

Males are often assumed to represent ~50% of a
fish population. However, attempts to accurately
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estimate sex ratio in natural populations becomes
problematic, since sexes are often partially segregated
(both horizontally and vertically) and this shifts
seasonally in conjunction with the spawning period
(Morgan and Trippel, 1996; Tomkiewicz et al., MS
1997; Nordeide and Kjellsby, 1999; Jakobsen and
Ajiad, 1999). Some sex ratios may not be maintained
at 50:50 as a result of disproportional fishing effort
that is associated with gender (Kosior and Skolsky,
MS 1992; Brule et al., 1999). Females often begin to
outgrow males shortly after attaining sexual maturity
and old, large individuals of many fish species tend
to be females (Roff 1982, Scott and Scott, 1988;
Rijnsdorp and Ibelings, 1989; Trippel, 1995; Hunt,
1996; Burton and Flynn, 1998). Consequently, size-
selective harvesting practices as a result of mesh size
could influence size- (and age-) specific sex ratios.
Overfishing that reduces stocks to a few young cohorts
is therefore likely to produce a shortage of adult
females rather than males, as faster-growing females
are more vulnerable to the size-selective gear. Sex-
selective exploitation, either directly on gender
(Morgan and Trippel, 1996; Jakobsen and Ajiad, 1999)
or indirectly through body size, is thus potentially
widespread and the impact of the resulting skewed
sex ratios should be considered in estimates of
reproductive potential of fish populations.

The allocation of energy into male reproductive
tissue (primarily sperm production) varies among
species, populations, individuals and time (seasonally
and annually) (Sorokin 1960; Iles 1964; Burton and
Idler, 1984; Berner, 1985; Rijnsdorp, 1990;
Tomkiewicz and Kdster, MS 1999; Rideout and
Burton, 2000). Given this variability, and that it may
have some bearing on recruitment, it is noteworthy to
establish procedures for measuring energetic
investment in spermatogenesis. Distinction between
immature and mature males within a population is of
prime importance. Statistics collected from sub-
sampled research survey catches often include data
on gonadal stage of development (e.g., immature,
developing, ripe, spawning, spent and resting stages).
To facilitate stage identification, photographs of
different gonadal stages of various body sizes of a
species should be supplied to research survey
personnel (e.g., Morrison, 1990; Tomkiewicz et al.,
2002). Samples of testes may need to be returned to
the laboratory for stage confirmation. For females,
immature and resting stages cannot be accurately
distinguished without histological analyses (Trippel
et al., 1997a; Saborido-Rey and Junquera, 1998).
Similar histological analyses may also be needed for

testicular staging. In cod, spermatogenesis seems
subject to delays in its initiation, with individuals
within a stock showing considerable variation in
stages attained (Burton ef al., 1997). In male winter
flounder, mitotic proliferation of reserve sperma-
togonia was completed six months before the onset of
spawning (Moulton and Burton, 1999). Many marine
species are determinate spawners including most
gadoids and pleuronectoids and the amount of sperm
present in the testes of ripe males represents the
number of spermatozoa to be released during the
spawning period (Rideout and Burton, 2000; Murua
and Saborido-Rey, 2003). In addition to the utility of
gonadal staging to distinguish immature from mature
fish, staging can also be used to determine the extent
of spawning season, particularly when a number of
surveys occur within a year (Hutchings and Myers,
1993; Tomkiewicz and Koster, MS 1999).

The gonad weight of mature ripe males should
be recorded (when confident they have not yet initiated
sperm release) to provide a measure of the individual’s
annual allocation of energy to reproduction. The stage
most suited for accurate representation of sperm
production is when spermatozoa are fully mature, the
testes are then enlarged, though significant hydration
of the testes in preparation for spermiation has not
been initiated (e.g., stage 4 in Trippel et al. (1997a)
described as white and distended into wavy lobules
and a small amount of milt may be forced out by
pressure) (Fig. 2). Together with somatic weight, ripe
gonad weight can be used to generate testes weight-
body weight relationships. The development of annual
mature testes weight-body weight relationships from
research survey data would provide the basic capacity
to estimate annual sperm production of different fish
size-classes within a population (Rajasilta ez al., 1997,
Burton et al., 1997).

Spawning season according to sex and body size
can be used to establish whether sperm limitation
exists for gravid females of particular sizes, or in
specific spawning areas of a stock. Seasonality of
spawning may differ among age groups of fish, such
that small males may begin to spawn earlier and end
earlier than large males (Hutchings and Myers, 1993;
Trippel and Morgan, 1994a; Trippel et al., 1997b).
Moreover, if small precocious males (Fig. 1) persist
in an unspawned state when other males have spawned
out, this would provide evidence that they did not
participate in mating and should be discounted in
estimates of stock reproductive potential (Trippel and
Morgan, 1994a). In smallmouth bass (Micropterus
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dolomieui), a freshwater nesting fish, ~10-45% of
young mature males (age 4—5 years) established nests
which increased to ~75% at older ages (Ridgway et
al., 1991). Gonadal inspection also offers the ability
to evaluate the extent of sperm atresia, either of the
entire year's production or resorption of some
remaining portion of mature spermatozoa left in the
testes after cessation of the spawning season (e.g.,
Rideout et al., 2000).

Estimation of male stock biomass is possible by
using routine stock assessment data once sex ratio and
maturity ogives are applied to cohort abundance. For
determinate spawners, stock "sperm production" could
then be estimated from testes weight-body weight
relationships developed for ripe fish in each year
(Trippel, 1999). Condition factors (e.g., Fulton's
condition factor; liver condition index) have been
shown to be important proxies for reproductive
investment in females (Lambert and Dutil, 1997b;
Yaragina and Marshall, 2000; Lambert ef al., 2003).
Perhaps similar condition factors could be used for
males to estimate mature testes weight, reducing the
need to measure or have data available of testes weight
in every year of a recruitment time series.

Obtaining estimates of spermatocrit, sperm
motility and sperm fertilization potential are possible
in field studies. However, other than spermatocrit,
these male traits are more easily measured in the
laboratory as described earlier.

Viable Sperm Production of a Fish Stock

While knowledge about male reproductive traits
has been successfully applied in aquaculture for
several decades, attempts to evaluate male
reproductive potential in natural populations rarely
exist. This section outlines the possible ways in which
data on male reproductive traits can be applied to the
estimation of viable sperm production of a fish stock.

Application of Spermatocrit Data to Estimation of
Stock Sperm Production

Spermatocrit of cod varies annually as well as
across age and size classes (Fig. 4; Trippel and
Morgan, 1994a). This may reflect different nutritional
or environmental conditions among years and could
lead to fluctuations in the fertilization capacity of a
population. Even though spermatocrit-sperm density
equations have not yet been derived for many exploited
marine fishes, routine measurement of spermatocrit
of fish captured at sea could be initiated to provide

scalar information on annual and seasonal variation
in sperm density. In some species, spermatocrit tends
to thicken as the spawning season progresses (Atlantic
halibut, Methven and Crim, 1991; haddock, Trippel
et al., 1998; and Atlantic cod, Rakitin ez al., 1999a)
and in other species spermatocrit declines seasonally
(turbot, Suquet ef al., 1992b; Baltic Sea herring
(Clupea harengus membras), Rajasilta et al., 1997,
and yellowtail flounder, Clearwater and Crim, 1998).
Although spermatocrit has been shown to vary among
individual Atlantic cod held in captivity, it tends to
remain consistent (both absolute and seasonal
patterns) for individuals in successive years,
regardless of male age, body size and condition factor
(Fig. 8) (Rakitin ef al., 1999a).

In Northeast Arctic cod, variation in spermatocrit
levels among males was associated with both mass of
sound-producing drumming muscles and fin size
(Engen and Folstad, 1999). In promiscuous guppies
(Poecilia reticulata), level of sexual activity and
display rates correlated positively with sperm number
and males adopted mating strategies to suit their social
environment (Matthews et al., 1997; Evans and
Magurran, 1999). Consequently, variability in
spermiation and in the seasonal quantity of
spermatozoa produced per unit weight of testes are of
relevance in the estimation of male reproductive
potential.

Application of Sperm Motility Data to Estimation
of StockViable Sperm Production

The usefulness of sperm motility estimates as a
measure of male potency in fish has received relatively
minor attention and requires further study. Westin and
Nissling (1991) have examined the effects of salinity
on sperm motility and egg fertilization success in
Baltic cod. At very low salinities (11.5 and 12 ppt),
sperm vibrated or were non-motile, yet at 12.5-30 ppt
and higher there occurred substantial sperm
movement. Interestingly, 5-20% of eggs were
fertilized at 5 and 7 ppt and ~100% were fertilized at
>11 ppt. The findings were related to poor cod
recruitment in years of low salinity in the Baltic Sea.
Nissling and Westin (1997) also showed that Belt Sea
and Baltic Sea cod differed in sperm motility and this
variation was characteristic of the salinity differences
of the area the adults inhabited.

The role that ovarian fluid plays in influencing
motility and fertilization success has recently been
studied (Litvak and Trippel, 1998). It was revealed
that cod sperm motility is enhanced when diluted
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Fig. 8. Seasonal and annual variation of spermatocrit of two Atlantic cod. Each point is the
mean of three measurements of spermatocrit from a semen sample. L: total length,
W: body weight, and K: Fulton's condition factor. (Reproduced from A. Rakitin,
M. M. Ferguson, and E. A. Trippel. 1999. Spermatocrit, spermatozoa density and
size in Atlantic cod (Gadus morhua): correlation and variation during the spawning
season. Aquaculture, 170: 349-358. Copyright 1999, with permission from

Elsevier Science.)

semen was placed in ovarian fluid or directly on the
egg's surface still coated by ovarian fluid compared
to seawater alone. Eggs, ovarian fluid, sperm, seminal
fluid and seawater become mixed when genital pores
are closely aligned during spawning. The ovarian fluid
contribution to the gamete mixture may improve
chances for fertilization, such that sperm can be
activated or their velocity enhanced when in contact
with maternal substances (Amanze and Iyengar, 1990;
Litvak and Trippel, 1998). Note, turbot sperm motility
(duration) approximately doubled when males were
kept in captivity with other females as compared to
being in isolation (Suquet ef al., 1992b) and a
lengthier period of herring sperm motility occurred
in the presence of eggs (Geffen, 1999). These maternal
aspects are not considered in standardized practices
used to assess sperm motility (Trippel and Neilson,
1992; Billard et al., 1995; Chauvaud et al., 1995).
The absence of maternal substances in estimation of

sperm motility of Baltic cod by Westin and Nissling
(1991) may explain why fertilization was achieved at
low salinities (5—7 ppt), despite immotility of sperm
at these salinities.

Trippel and Morgan (1994b) showed that cod
sperm held in seawater for 1 hr maintained high
fertilization success when brought into contact with
fresh eggs (i.e., previously unexposed to seawater),
indicating prolonged sperm longevity in this species
(Fig. 5). This facet of spawning differs from freshwater
teleosts in which gamete longevity in water is
commonly <1 min (Billard and Cosson, 1992; Hoysak
and Liley, 2001). Extended sperm longevity may have
some adaptive importance in large dense spawning
aggregations (Hourston and Rosenthal, 1976; Morgan
and Trippel, 1996; Nordeide and Kjellsby, 1999).
Considering the lengthy time (several minutes) it takes
for an individual female to release a large egg batch
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(Fordham and Trippel, 1999; Rakitin et al., 2001;
3 min for 500 ml or ~200,000 eggs), it is possible
that viable unfertilized eggs that are able to maintain
their fertilization capacity for 1 hr in sea water
(Kjorsvik and Lenning, 1983) could be adrift within
the cod spawning assemblage and be subsequently
fertilized by drifting viable sperm from other distant
males (Fig. 9). This alternative form of fertilization
differs from that previously referred to involving
satellite males in close contact with a spawning female
(Hutchings et al., 1999).

A review of sperm quality in relation to paternal
age and reproductive experience of freshwater and
marine fishes was previously performed (Trippel and
Neilson, 1992). Investigators showed that age and size
at sexual maturity could influence sperm motility in
some species, though for others no trend with
reproductive experience existed. A recent study on
sockeye salmon (Oncorhynchus nerka) reported sperm
from males of various ages differed little in motility
and did not differ at all in their ability to fertilize

eggs (Hoysak and Liley, 2001). Few studies have
examined sperm fertilization capacity in diluted
seawater mixtures (e.g., herring, Rosenthal et al.,
1988 (Fig.10); Atlantic cod, Trippel and Neilson,
1992). Consequently, the application of sperm motility
estimates to the estimation of stock reproductive
potential is still in need of further investigation.
Clearer understanding of the role of paternal-maternal
interactions among germ cells is required
(Yanagimachi et al., 1992; Takborsky, 1998). There
is a need for studies that challenge sperm in seawater
diluted mixtures. Assessment of seasonal changes in
sperm motility is also required (Wang and Crim, 1997,
Shangguan and Crim, 1999). Ageing of spermatozoa
is also an interesting feature of sperm production in
many marine fish species. The advantages of
possessing motile sperm to more rapidly access the
egg's micropyle are significant (Ginsburg, 1968;
Levanduski and Cloud, 1988), though specific
quantification or ranking of males in association with
sperm motility and reproductive potency requires
further investigation.

Schematic Representation of Promiscuous Fertilization

70 cm Cod

250 000 Eggs
195 Million Sperm

PR

Labrador Current Velocity 30-40 cm-s, equates to Gamete Viability Drift of 1.1-1.4 km in 1 hr
g i R 2 Al x et DT T e

Fig. 9. Schematic illustration of the potential for promiscuous fertilizations to occur as a consequence
of'extended gamete longevity in both sexes in Atlantic cod. The amount of eggs released in a
single batch and the extended longevity in seawater (30—60 min, Kjorsvik and Lenning, 1983)
and particularly of sperm (1-3 hr, Trippel and Morgan, 1994b) provide for a broad scope of
viable egg:sperm interactions among suspended gametes of various parents.
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Application of Sperm Fertilization Potential Data
to Estimation of Stock Viable Sperm Production

This facet of male reproductive potential has clear
application to viable stock sperm production estimates.
Fertilization potential represents a broad suite of
sperm cell characteristics, and conceivably precludes
the need to explicitly use sperm motility as a
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Fig. 10. Relationship between fertilization rate and sperm
density of Baltic Sea herring in 10 semen dilution
media. Data from three females combined. Vertical
lines: range of observations; Open bars: standard
deviation; Closed bars: standard error; Numbers over
bars indicate the number of replicates. (Reproduced
from H. Rosenthal, D. Klump, and J. Willfuhr.
1988. Influence of sperm density and contact time
on herring egg fertilization. J. Appl. Ichthyol.,
4: 79-86. Copyright 1988, with permission from
Blackwell Publishing.)

component of viable sperm production. Experi-
mentally derived values from laboratories (either land-
based or on a research vessel) are necessary as in most
environments it is not readily possible to measure
sperm fertilization success of individual males in
spawning assemblages (Marconato et al., 1997,
Petersen et al., 2001). However, some studies have
estimated area-wide egg fertilization rates in
population spawning areas (Markle and Waiwood,
1986; Howell ef al., 1991). Precautions described by
Lambert and Thorsen (2003) in extrapolating findings
from captive fish to wild populations also apply to
fertilization potential.

Equation of Viable Sperm Production of a Fish
Stock

Several attributes of male reproductive potential
have been measured of gadoid, pleuronectoid and
clupeid fishes and these studies, including a brief
summary of their findings, are presented in Table 1.
An initiative towards representing a population’s
effective sperm production using these data is timely
given the state of fish stocks and the growing
knowledge of male fish reproduction. In this regard,
a generalized equation to estimate a population's
annual viable sperm production and male reproductive
potential is given for determinant spawning species:

Viable Sperm Produced by Population:

1
znipitivisi i
i=1

where,

i is age (in years),

I is oldest age class

n, is numbers at age i,

p, is proportion of sexually mature males that
participate in spawning at age i,

¢, is mean testes weight of fish at age 7/ (kg testes),

v, is mean volume of semen produced per kg of testes
weight at age i (m/ semen/kg of testes),

s, is mean number of spermatozoa per mL of semen
from fish at age i (spermatozoa/ml semen),

/f, is sperm fertilization potential as a function of e.g.,
condition factor K at age i, ' (K)).

This equation incorporates a number of aspects
of male reproduction and is intended to be applied to
a variety of determinant spawning species. It
represents the abundance and biomass of sexually
mature males of each age group in a given year in a
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fish stock, and adjusts for, where necessary, the failure
of certain segments of a population to release sperm
that subsequently undergo testicular atresia. Variables
in the equation exist that represent testes weight and
the associated volume of semen by male age. The
number of sperm released by each age class is then
estimated by simple adjustments of number sperm per
unit volume. Lastly, an important aspect is their
fertilization potential, which is estimated from
experimental procedures and related to a body metric
such as male condition factor. For example, fish in
poor condition may produce fewer sperm due to lower
allocation to reproduction, and these may be of poor
viability (i.e., via reduced swimming speed).

Example: Viable Sperm Production of Newfoundland
and Labrador Cod

Available data

Population data on cod of Newfoundland and
Labrabor (NAFO Division 2J3KL) and experimental
findings on captive cod of the Bay of Fundy (NAFO
Division 4X) were integrated to generate a time series
of male reproductive potential for Div. 2J3KL cod (i.e.,
the number of viable sperm produced per year) using
the above equation. Population statistics of Div. 2J3KL
cod were taken from Department of Fisheries and
Oceans, Canada, stock assessment documents (Lilly,
MS 1996; Shelton et al., MS 1996; Lilly et al., MS
2000). When data were missing (e.g., condition factor,
weight-at-age or maturity) values were taken from the
same age fish from the nearest previous year with data.
If no data existed from the previous year, data from
the nearest year before that were used. Cohort numbers
existed to age 13 (Shelton ef al., MS 1996) while some
data extended only to age 12. In these cases, we
assumed age 12 values for age 13 fish.

Data on the number at age of cod (1978-95) were
taken from the virtual population analysis of the Div.
2J3KL cod stock assessment (Shelton ez al., MS 1996).
Mean weights-at-age were taken from cod caught
during the autumn bottom-trawl surveys (Shelton et
al., MS 1996). Mean weights at age were calculated
with a weighted average (by stratified total numbers)
of mean weight-at-age of each NAFO Division.

A 50:50 sex ratio in the population was assumed.
Data on proportion mature at age for males (1982-84
and 1986-95) were taken from the research survey
data (Trippel ef al., 1997a). These values were used
to estimate mature biomass of males. Not all sexually

mature males participate in spawning, as evidence
indicates small first-time spawning males (age 3 yr)
do not release sperm (Trippel and Morgan, 1994a)
and likely undergo testicular atresia (Rideout et al.,
2000). These males were included in estimates of male
spawning stock biomass but excluded from data used
to estimate sperm production.

Mean testes weight per kg of fish at each age was
determined from an age-gonadosomatic index (GSI)
relationship representing a positive association of
gonadal investment with an increase in age (Trippel
and Morgan, 1994a). Three percent of testes weight
was assumed to be connective tissue, primary
spermagonia, and residual unspawned sperm (Trippel
and Morgan, 1994a), the residual sperm is presumably
resorbed as GSI declines to 1% in early autumn
(Rideout and Burton, 2000). Weight of semen was
converted to volume by multiplying by a factor of 1.04
(given its higher density than water; E.A. Trippel,
unpubl. data). This conversion was based on a
spermatocrit of 0.60 (the approximate mean value of
cod semen for the Grand Bank (Trippel and Morgan,
1994a) and is similar to Bay of Fundy cod (Trippel et
al., 1998; Rakitin ef al., 1999a). No age or body size
relationship existed with spermatocrit (Trippel and
Morgan, 1994a), although it is known to increase
within individuals as the spawning season progresses
(Rakitin et al., 1999a). The number of sperm per ml
of semen was estimated using the equation of Rakitin
et al. (1999a) developed for Bay of Fundy cod. There
exist 1.16 x 10'° sperm in one ml of semen having a
spermatocrit of 0.60. The longer spawning season of
older males of the Grand Bank (Trippel and Morgan,
1994a) was not separately factored in, but the
relationship is probably highly correlated with the
GSI-age relationship, i.e., a long spawning period
provides for improved chances of recruitment
(Hutchings and Myers, 1993; Trippel et al., 1997b).
Atlantic cod is a determinate spawner (Rideout and
Burton, 2000) and thus mature testes weight could be
used as a good proxy of annual semen production.

Sperm fertilization potential was not dependent
on age and first-time spawning (Trippel and Neilson,
1992; Trippel and Morgan, 1994a) which is in contrast
to egg quality (Trippel, 1998). However, fertilization
potential has been shown to be positively correlated
with male condition factor (Rakitin er al., 1999b).
Mean annual condition factor at age (K,) was
calculated through a weighted mean (weighted by
NAFO Division specific abundance) of Fulton's
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condition factor at age (K,) of cod (Lilly, MS 1996)
from each NAFO Division as follows.

i P
K; = 2 Ky —
h=1 j

nl
where,

i is age (in years)

h s Division (i.e., 2J, 3K, and 3L)

H is total number of Divisions i.e., 3

K is mean annual condition factor at age /

K is annual condition factor at age i/ in NAFO
Division 4

is abundance at age / in NAFO Division /4

n. s total abundance at age 7 in the stock

Fertilization potential of cod sperm (f) is generally
between 0.30 and 0.70 (Trippel and Neilson, 1992).
Estimates of fertilization potential were created from
the mean annual condition factor at age (K,) by the
linear model, f=1.554 (K)) — 1.028. This relationship
allowed fertilization potential in the Div. 2J3KL cod
stock to vary between 0.30 and 0.70.

Results

The number of sperm cells released by mature
male cod of Newfoundland and Labrador (mean
sperm/male) was highly variable through the study
period (Fig. 11). Both total sperm per mature male
and viable sperm per mature male reached a maximum
in 1981 of 3.72 x 10'2 and 1.84 x 10'2, respectively
and a minimum in 1993 of 1.81 x 10'> and 0.79 x
10'2, respectively. The high and low periods of total
sperm per mature male refer to 322 ml and 156 ml of
semen/mature male, respectively and a population
total of 63.9 million and 1.7 million liters of semen,
respectively. During this period, mean age and mean
condition factor of the stock declined (Lilly, MS 1996;
Shelton et al., MS 1996). A closer association was
observed between abundance of age 3 recruits and
viable sperm production than between age 3 recruits
and spawning stock biomass (Fig. 12). Specifically,
mature stock biomass and age 3 recruits were poorly
correlated and not significant having a > = 0.082,
P = 0.30 using linear regression analysis without
passing through the origin. The regression between
viable sperm and age 3 recruits created a marginal
improvement in amount of variation explained (r* =
0.139, P = 0.17). Distinct peaks in the number of
viable sperm in 1981 and 1986 corresponded to
distinct peaks in the number of age 3 recruits in those
same years (Fig. 12). From the viable sperm — age 3
relationship, the number of sperm to generate one
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m Total sperm
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Fig. 11. Number of sperm produced per mature male by

Atlantic cod in NAFO Divisions 2J3KL.

recruit (age 3) was estimated to be 1.60 x 10'2, i.e.,
1 600 billion sperm on average (equation: age 3
recruits = 1.07 x 1072 (viable sperm) + 1.88 x 107).

Discussion

This example is not intended to indicate that
sperm production is superior to egg production as a
predictor of recruitment. Spawning stock biomass has
been commonly used as a rough approximation of egg
production, and this approach in itself has come under
much criticism (e.g., Marshall et al., 2003; O'Brien
et al., 2003; Mukhina et al., 2003).

This is a preliminary attempt to estimate viable
sperm production across a time series of a fish stock.
In our example, there exist obvious gaps in the
available data, and several assumptions were made
accordingly. Skewed sex ratios of sets towards each
sex exist in surveys and in part are related to the
formation of spawning shoals (Morgan and Trippel,
1996). Evidence indicates females dominate the older
age group (>10 yr) of Georges Bank (Hunt, 1996) and
Northeast Arctic cod (Jakobsen and Ajiad, 1999),
partly due to their longevity. Analysis of Div. 2J3KL
cod indicates a smoothed sex ratio range of 0.43 to
0.53 (maximum 9% difference) (Morgan, MS 2000).
Further effort to incorporate annual age-specific sex
ratio data is recommended. Effort could be placed on
recording data of pre-spawning mature testes weight
to further refine the relative allocation of energy to
reproduction in relation to body size and age. The
process of integrating experimental and field data has
been applied for female components (e.g., Murawski
et al., 2001; Marteinsdottir and Begg, 2002) and is a
resourceful approach to understanding recruitment.
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Fig. 12. Temporal trend in mature stock biomass, viable
sperm production, and age 3 recruits produced for
Atlantic cod in NAFO Divisions 2J3KL.

The extent that an enormously abundant quantity of
viable sperm, compared to expelled eggs, in some way
further influences recruitment is of interest and
relevance. This analysis suggests there are some gains
to be made in estimating reproductive potential in this
regard. Further analyses of interest may reside in
populations where sex-selective harvesting over many
generations has taken place resulting in skewed sex
ratios of a stock. The interaction of gamete quality of
both sexes also lends itself to further research that
generates a more complete picture of the spawning
potential of a fish stock and its possible influence on
recruitment (e.g., annual estimation of fertilized egg
production). Moreover, parental effects on egg
mortality may be dependent on which female was
mated with which male, introducing additional
variation (Wedekind et al., 2001; Saillant et al.,
2001).

The use of underlying condition, age structure,
fertility, and GSI indicate a possible application of
estimation of male reproductive success in
understanding and predicting recruitment. Our results
highlight the inability of spawning stock biomass for
this stock to be considered a reliable representation
of stock reproductive potential. In the Div. 2J3KL cod
stock, mature stock biomass remained relatively stable
from 1981-88 and failed to capture the precipitous
decline in recruitment which occurred after 1981 (Fig.
12). Viable sperm was sensitive to this decline for one
year (1982) after which recruitment continued to
decline while viable sperm and mature stock biomass
remained relatively stable. This is similar to a

secondary decline in recruitment in 1986 after which
recruitment was not well represented by measures of
viable sperm and mature stock biomass. This tends to
highlight the fact that the measure of recruitment used
(age 3 VPA estimate) is far removed ecologically from
measures of stock reproductive potential. It is possible
that measures of reproductive potential of a population
can adequately describe recruitment events closer in
time to reproduction (e.g., larval recruitment).
However, much opportunity exists for other processes
to act on cohorts before reaching age 3, such as natural
and undirected fishing mortality. Prediction of
recruitment variation of some fish stocks has been
improved by integration of characteristics of
population demography and energetics (Murawski et
al.,2001; Marshall et al., 2003). For Div. 2J3KL cod,
partitioning of male reproductive potential and
application of an equation resulted in greater
explanatory power over spawning stock biomass, but
still inadequately described recruitment patterns.

It is unclear at this point whether the possible
usefulness of the male reproductive equation would
be a result of the measure of viable sperm per se or
whether it would be the result of the explicit
incorporation of variables such as age structure,
maturity, and condition factor. Either way, these
variables have been incorporated in an informative
and biologically meaningful way. Further, this
measure of male reproductive potential provides a
promising framework that can be used to explore the
relationship between reproductive output of a
population and recruitment.

Assessment of male reproductive potential for use
in stock-recruitment relationships is in its early stages
of development. As reviewed, characterization of
sperm quality and fertilization potential demand
detailed experimentation, and are not without
associated shortcomings. Some aspects of male fitness
are presently easily measured and can be used to
estimate reproductive potential. For example, the
mature testes of ripe unspawned males could be
weighed and spermatocrit determined of stripped
semen in the case of determinate spawners. Thus, for
an individual, testes weight could be used to represent
sperm output (volume of milt) and when multiplied
by spermatocrit could be used as a proxy for an
individual's total seasonal sperm output (positive
correlations exist between testes weight and volume
as well as between spermatocrit and sperm density).
Experimental research on male fertilization potential
and the impact of sire body characteristics on hatching
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and larval traits could then be used to integrate sperm
quality with quantity and evaluate male impact on
reproductive success.

Aspects of spawning that are also important and
require further study include factors governing male
participation in the spawning act. Female choice may
additionally result in the selection of the "best" males
in a population. Hence, integrating lesser males in
the estimation of stock reproductive potential may be
of limited value, particularly if a single male is capable
of fertilizing all of the ova of several females.
Monopolization of egg fertilization by a single male
may be the norm, but it is also common to observe
additional males join in a spawning act initiated by a
"dominant male" (Hutchings et al., 1999; J.A.
Hutchings, pers. comm.). Estimating male fertility
within a population may therefore only serve as an
estimate of the potential ability of sires to affect
progeny production and fitness, as knowledge of the
mating dynamics in natural aggregations is
incomplete. Nonetheless, documentation of
widespread variation in sperm quality and quantity
in a population or between years would begin to alert
investigators that variability in female spawning
success could be impacted by the male gender. Further
segregation of sperm production by specific
components of the population may also be an area to
pursue. Aspects such as the lack of large males to
match the long spawning season of large females could
be a limiting factor of recruitment (though total sperm
production of the population may not). A sensitivity
analysis could be conducted to examine the relative
degree of influence of each factor in the model on
total viable sperm production. For example, one could
test the impact of different male characteristics on
stock reproductive potential. Synergistic interactions
linked to poor gamete quality of both sexes (e.g., due
to low condition) could cause further reduction in
fertilization success and the quality of offspring and
inevitably recruitment success. The study of male
parental traits and sperm quality/quantity and their
role in recruitment variability is thus a challenging
area of fishery science and if investigated further will
assist in broadening our knowledge of reproductive
processes at the population level.
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