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Abstract

The physical environment of the ocean is believed to have a major influence on pandalid
shrimp populations and there are numerous studies that incorporate environmental variables to
predict and forecast landings from the fishery and/or resource abundance. Cause-and-effect
mechanisms are not clearly understood in many instances but the predictive nature of the
relationships provides a potentially powerful forecasting tool. Meaningful indicators of the
prospects for shrimp stocks that support valuable commercial fisheries are necessary in a
comprehensive stock assessment process.

In this paper, a time-series analysis is used to estimate a predictive model for standardized
annual catch rates (an abundance index) in a shrimp fishing area off the mid Labrador coast
(NAFO Div. 2HJ). Environmental data (annual winter ice cover) are incorporated in a transfer
function to improve predictions of catch rates and facilitate their forecasting. Results support
the hypothesis that cold conditions, which result in more extensive ice cover, are favourable for
the northern shrimp (Pandalus borealis) at early life-history stages. Predictions of annual catch
rates fit the observed values well in most cases and a catch-rate forecast for several years is

provided. Possible functional mechanisms are discussed.
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Introduction

The importance of environmental (oceanographic)
influences in affecting the dynamics of pandalid shrimp
populations has been recognized for many years (e.g.
Rasmussen, 1953) and is widely accepted.
Nevertheless, the statistical relationships have been
demonstrated rarely and the functional relationships,
in most cases, have not been clearly explained. The
decline of the shrimp (Pandalus borealis) resource in
the Gulf on Maine during the 1970s was well
documented but opinions were divided on the relative
importance of natural and anthropogenic factors (see
Apollonio et al., 1986; Clark, et al., 2000). The
collapse of the Alaskan fishery for P. borealis (renamed
P. eous by Squires, 1992) during the late-1970s
prompted an extensive review of the literature on the
relationship between shrimp distribution and physical
oceano-graphic parameters (Ippolito et al., 1980). The
proceedings of the international pandalid shrimp
symposium held in Kodiak, Alaska in 1979 (Frady,
1981) included research presentations and panel
discussions on the importance of environmental factors
to pandalid shrimp. Subsequently, Nunes (1984)

conducted major studies that demonstrated effects of
temperature on shrimp reproduction and larval
survival. This Symposium on Pandalid Shrimp
Fisheries — Science and Management at the Millennium
— devoted an entire session to environmental and
trophic considerations, concluding that these factors
"... must play an increasingly important role in the
assessment and management of pandalid populations
in the future." (NAFO, 2000).

Predictions of shrimp landings/abundance based
on correlations with environmental variables have
taken a variety of forms. Driver (1978) included
predictions of mean Zurich sunspot number with
meteorological variables to forecast abundance of
Crangon crangon in the Irish Sea for several years.
Sheridan (1996) associated indices of fishing activity
with measurements of surface and ground-water levels
to make short-term predictions of Penaeus duorarum
landings off southwest Florida. De Pasquier (1998),
in conducting a stock assessment for white shrimp
(Penaeus schmitti) in Lake Maracaibo, Venezuela,
incorporated temperature as an environmental variable
in a modified surplus production model and concluded
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that catches can be predicted allowing for more
efficient fishery management.

There are numerous examples of forecasting
abundance of pandalid shrimp. Dow (1966) suggested
that seawater temperatures from Boothbay Harbour
(Maine, U.S.A.) could be used to predict relative
abundance of commercial-sized shrimp in the Gulf of
Maine two years later. This was reworked to a longer-
term forecast based on the negative relationship
between catch and mean seawater temperature four
years earlier (Dow, 1977). Warren (MS 1973) observed
that, over a fifty-year period, annual mean water
temperature in the Wash (United Kingdom) was
inversely related to pink shrimp (P. montagui)
landings in the following year. Lysy and Dvinina (MS
1991) showed, that in areas of the Barents Sea, water
temperatures in spring could be used to forecast the
size of the P. borealis stock up to 3 years. Hannah
(1993, 1999) demonstrated a strong, negative
correlation between recruitment of ocean shrimp
(P. jordani) to the fishery off Oregon, U.S.A., and sea
level height in the previous year but conceded that the
precise mechanism for the relationship remains
speculative. A recent, unpublished study in the Gulf
of St. Lawrence (Canada) showed that models of
nitrate levels in surface water layers might be useful
to predict commercial catch rates of P. borealis up to
three years (J. Plourde, Department of Fisheries and
Oceans, Mont-Joli, Quebec, pers. comm.).

Fogarty (1989), in describing methods to forecast
yield and abundance of invertebrates, distinguished
between structural and heuristic models. The
structural models deal with cause and effect in
describing relationships within natural systems
whereas the latter recognize recurrent patterns in time
series without implying causality. Nunes (1984) stated
that the correlation (heuristic) studies have only
limited value since they do not explain the direct
effects of environmental factors. Fogarty (1989)
argued that it is often impossible to manipulate natural
systems within strictly controlled experiments and,
therefore, the only alternative is to investigate factors
for which there are reasons to suspect causal
relationship. At risk of taking both authors out of
context, we enter the "argument" from the viewpoint
that, in addition to establishing current resource
status, the stock assessment process for northern
shrimp, P. borealis, must utilize forecasting tools to
comment on prospects for recruitment and spawning
stock biomass. Heuristic models might not serve well
in our understanding of natural processes but can

provide accurate predictions and forecasts and, as
stated by Fogarty (1989), serve as the foundation for
future research. This was supported in part by Hannah
(1993) who noted that, despite limitations, correlative
studies could be important for shrimp to develop
hypotheses about environmentally driven recruitment.

This paper was inspired by the notion of Fogarty
(1989) that it may be possible to obtain accurate
forecasts with heuristic models using an approach
(Box and Jenkins, 1976) that provides a formal
structure within an adaptable framework. We use time-
series analysis that incorporates environmental data
to construct predictive models for standardized catch
rates (an abundance index) in a northern shrimp
(P. borealis) fishing area off the mid Labrador coast
(Div. 2HJ). The underlying hypothesis is that "cold
conditions" are favourable for shrimp at early life-
history stages.

Materials and Methods
Study area

Two depressions (marginal troughs) in the mid
Labrador Shelf, known as the Hopedale and
Cartwright Channels (Fig. 1), have supported
commercial, bottom-trawl fisheries for northern
shrimp since the mid-1970s. The deepest, landward
portions of these channels (>500 m) are connected to
the seaward shelf edge by a saddle with depths greater
than 200 m. Commercial concentrations of shrimp
occur primarily in depths between 200 and 500 m
within the channels and saddles and along the shelf
edge. Initially, shrimp within each channel were treated
as separate stocks but, beginning in 1994, were
combined for assessment/management purposes.
Fishing grounds throughout the area, especially within
the channels, are largely ice covered in winter, spring
and even early summer in cold years. During warm
years, the ice is restricted to the Labrador Shelf
allowing year-round fishing along the shelf edge.

Fishery data

Catch (kg) and effort (hours fished) from
commercial vessel log records were compiled for all
years from 1977 to 1998 within the shrimp fishing
area. Catch-per-unit-effort (CPUE), expressed as kg
per hour, was calculated by year. The raw CPUE data
were standardized by multiple regression in an attempt
to account for variation due to factors such as year,
month, area and vessel (Parsons et al., MS 1999). The
annual series (Fig. 2), (standardized to: July; the
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Fig. 2. Standardized catch-per-unit-effort index for
Hopedale and Cartwright Channels, 1977-98
(from Parsons et al., MS 1999).

northern portion of Hopedale Channel; and the fishing
power of a vessel of long-standing in the fishery) has
been used as a measure of fishery performance and as
an indicator of change in the fishable stock over time.
Natural log (/n) CPUE values for each year, output from
the regression analysis, were used in the current
modeling exercise.

Environmental data

Several environmental variables, expressed as
annual values, were examined during preliminary

Location of Hopedale and Cartwright Channels oft Labrador.

investigations of possible associations with trend in
shrimp CPUE. These included bottom temperature at
a hydrographic monitoring site (Station 27) off St.
John's, Newfoundland, cross-sectional area of the cold
intermediate layer (CIL) off northeastern Newfound-
land, location of the Gulf Stream front and several
measures of ice cover off the northeast Newfoundland
and southern Labrador coast. The series (1970-98) of
annual, winter (January—March) ice cover (km?) for
the area between 45° and 55°N, as presented by
Drinkwater et al. (MS 1999) (Fig. 3), was chosen for
two reasons. Initially, it provided marginally improved
correlations with CPUE compared to other data and,
particularly, was more meaningful when considering
possible functional relationships.

Modeling procedures

An autoregressive, integrated, moving-average
(ARIMA) procedure was used to derive predictive
models for shrimp CPUE. These also are known as
Box-Jenkins (1976) models that, procedurally, are
described in three steps:

1. [Identify: autoregressive and/or moving-average
process in the response series (i.e. CPUE),

2. Estimate: specify the model to fit to the variable
and estimate its parameters, and

3. Forecast. generate future values of the response
series and confidence intervals for the forecasts.
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Fig. 3. Area of winter (Jan—Mar) ice cover (km?) off

Newfoundland-Labrador (from Drinkwater et al.,
MS 1999) and NAO anomalies (pressure
difference in millibars, see Discussion) , 1970—
98.

Statistical analysis system software (SAS, 1984, 1993)
was used for modeling. The models investigated in the
current analysis included an input series (i.e. winter
ice cover) in a transfer function. Transfer functions,
in addition to modeling the response series (i.e.
CPUE) using its own past values, incorporate current
and past values of an input series. When delays are
evident from valid crosscorrelations, inclusion of the
input series can improve the forecasting power of the
model.

The key to the identification step was matching
theoretical autocorrelation functions of different
autoregressive/moving-average processes with the
sample functions obtained from the analysis.
Diagnostic tools for the estimation step included
significance tests for parameters, goodness-of-fit to
compare the model to others and tests for "white noise"
(uncorrelated) residuals. The white noise tests indicate
whether the residual series contain additional
information requiring more complex modeling.

Results

The identification step for the CPUE data
produced autocorrelations that decayed rapidly
indicating stationarity (no trend) in the series (Fig.
4a). Although the data (Fig. 2) showed short-term
trends (i.e. a decline from 1977 to 1983, and an
increase thereafter, particularly during the 1990s),
there was no overall long-term trend. Therefore,
differencing (modeling the change in CPUE from year
to year rather than the CPUE series itself) was not
necessary. The autocorrelation functions (full, inverse
and partial) further indicated a first-order, auto-

regressive process, characterized by significant
autocorrelations at a lag of one year. The inclusion of
an autoregressive parameter (l-year lag) in the
estimation step achieved "white noise" residuals (Table
1) and no additional parameterization was required.
Several estimation trials showed moving average
parameters were either insignificant or created
instability in the model. The autoregressive model
predicts the CPUE as an average, plus some fraction
of the previous CPUE, plus a random error.

Similarly, the winter ice input series revealed a
stationary, first-order, autoregressive process (Fig. 4b).
Again, the inclusion of a single, autoregressive
parameter (1-year lag) reduced residuals to "white
noise" (Table 2) and more complex modeling was not
considered necessary. These results are consistent with
analyses of other environmental data (e.g. CIL) that
also have shown significant autocorrelation at a lag of
one year (Shelton et al., 1999).

In constructing the transfer function, which
involved crosscorrelation of the two autocorrelated
series, both the input and response variables were
filtered with a "prewhitening" model. Fogarty (1989)
explained that a time series model (in this case an
autoregressive model of order 1) is first fit to the input
series so that residuals are independent (reduced to
white noise). Then, using the same model, the input
series is filtered followed by the response series.
Residuals are crosscorrelated rather than the original
series. Crosscorrelations for the prewhitened series
(Fig. 5) showed highest correlations at shifts of 0 and
6 years. With no shift, the relationship was negative (-
0.42) whereas, with a shift of 6 years, the relation-ship
was positive (0.39).

The simplest transfer function model with
forecasting potential and for which residuals were
reduced to white noise included a first-order
autoregressive parameter for the CPUE series and the
winter ice series with a shift or delay of 6 years. The
input series, however, contributed far less to the model
than either the mean term, which was most important,
or the autoregressive parameter. Other model
specifications included an estimated intercept of
6.2573, an autoregressive factor of 1-0.9682 B**(1)
and an overall regression factor of 0.1121 (Table 3).

Predictions of annual In CPUE were close to the
observed values in most cases (Fig. 6). The six-year
forecast from 1999 to 2004 showed an increase in
CPUE for 1999 followed either by stability or, at worst,
a decline by as much as 50%.
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Fig. 4. (A) Autocorrelations + 2 standard errors (dotted line) for variable /n CPUE from ARIMA

modeling; mean of series = 6.266818, standard deviation = 0.403669, number of
observations = 22. (B) Autocorrelations + 2 standard errors (dotted line) for winter ice
input variable from ARIMA modeling; mean of working series = 2.292069, standard
deviation = 0.694036, number of observations = 29.

Discussion

The North Atlantic Oscillation (NAO) (Rogers,
1984) is generally regarded as one of the most robust
indicators of climate variation in the north Atlantic.
This index correlates with variations in several
environmental variables in the northwest Atlantic
including wind, salinity, temperature and ice. The
correlation between the five-year, low-passed filtered
winter NAO anomalies and the northeast New-
foundland Shelf ice cover anomalies was shown by
Colbourne et al. (1997) to be 0.72 (P = 0.05). Similarity

in the temporal fluctuations of the winter ice series and
the NAO anomalies (Fig. 3) suggests that the former
is a reflection of broad-scale climatic conditions.
Larvae of Pandalus borealis hatch in spring, under the
ice cover, from eggs carried by the females. Larvae
are known to remain for several weeks during the spring
and summer in the near-surface water layers (<50 m)
within the study area (Parsons ef al., 1986). Therefore,
it is reasonable to assume that variations in ice extent
and subsequent melting may influence larval survival
during this period.
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TABLE 1. Estimation of process parameters for shrimp CPUE from ARIMA modeling.

DF = degrees of freedom.

Parameter Estimate Std Error T Ratio Lag
Mean 6.48305 0.17282 37.51
Autoregressive 0.97339 0.08470 11.49 1
Autocorrelation Check of Residuals
Chi
Lags Square DF Prob Autocorrections
1-6 7.99 5 0.157 0.261 0.358 0.136 -0.002 0.026 -0.267
7-12 11.65 11 0.391 0.068 -0.181 0.193 0.120 0.015  0.044
TABLE 2. Estimation of process parameters for winter ice cover from ARIMA modeling.
DF = degrees of freedom.
Parameter Estimate Std Error T Ratio Lag
Mean 2.04578 0.30811 6.64 0
Autoregressive 0.69304 0.15070 5.60 1
Autocorrelation Check of Residuals
Chi
Lags Square DF Prob Autocorrections
1-6 8.69 5 0.122 0.289 -0.201 -0.212  0.042 -0.139 -0.244
7-12 10.52 11 0.485 -0.068  0.117  0.135 0.045 0.033  0.037
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Fig. 5.

Lag (years)

Crosscorrelations (+2 standard errors — dotted line)
for /n CPUE and winter ice from ARIMA modeling.
Both variables were prewhitened by the following
autoregressive filter: 1-0.69304 B**(1). Variance
of transformed series = 0.041778 and 0.276015;

number of observations = 22.

The above time-series analysis demonstrates a
process by which forecasting tools for northern shrimp
can be developed. Generally, for these types of models,
there should be at least 30 observations. With fewer
(as in this example where there are only 22 values
within the response series), parameter estimates may
be imprecise and standard errors and f-ratios
unreliable (SAS, 1993). This data limitation brings
into question our ability to identify with certainty the
autoregressive (and/or moving average) processes,
valid crosscorrelations between response and input
variables and, ultimately, a representative transfer
function. Indeed, the statistical significance of a
relationship between shrimp CPUE and winter ice
with a delay of six years is marginal within the current
analysis. Nevertheless, other model formulations,
using both unstandardized and standardized CPUE
with different oceanographic input series, showed
environmental signals in the crosscorrelations at
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TABLE 3. Estimation of transfer function parameters from ARIMA modeling. LNCPUE = response series, WICE = winter ice

input series, DF = degrees of freedom.

Parameter Estimate Std Error T Ratio Lag Variable Shitt
Mean 6.25734 0.21298 29.380 0 LNCPUE 0
Autoregressive 0.96820 0.08234 11.76 1 LNCPUE 0
Input series 0.11208 0.06538 1.71 0 WICE 6
Autocorrelation Check of Residuals
Chi
Lags Square DF Prob Autocorrections
1- 6 8.56 5 0.128 0.298 0.409  0.067 -0.061 0.070  -0.215
7-12 13.23 11 0.279 0.037 -0.243 0.153 0.118 0.110 0.068
8 important and that a first-order autoregressive model
s could fit the observed data adequately. A shrimp catch

Catch rate index
(o2}
(8]

55

S e e L B B s s s s e s s

1976 1979 1982 1985 1988 1991 1994 1997 2000 2003

Fig. 6. Transfer function model for /» CPUE and winter

ice input series with six-year forecast. Observed
= '*' predicted = 't+', and dotted lines = 95%
confidence intervals.

various shifts or delays. For example, bottom
temperature at Station 27 showed highest (negative)
correlations at delays of 5 and 6 years. Maximum and
spring ice cover were positively correlated, also at
delays of 5 and 6 years, and area of the CIL at 7 years.

Regarding the CPUE index, the unstandardized
series produced first order, autoregressive diagnostics
that were similar to those of the standardized series,
allaying concern about making conclusions that might
be influenced by the regression analysis of the latter
(S. Smith, Department of Fisheries and Oceans,
Dartmouth, Nova Scotia, pers. comm.). The standard-
ized series was used in order to achieve stability during
the ARIMA estimation step.

The example presented showed that the mean of
the CPUE series and its autoregressive parameter were

includes several year-classes (ages 4 to 7+) and it is
not surprising, therefore, that a significant auto-
regressive process was detected. (More surprising,
perhaps, was the lack of significant, higher order
parameters, given that a strong year class can
contribute substantially to the catches for more than
two years.) However, the forecast capability of such a
model is limited to only one time period. Although the
winter ice input series did not contribute greatly to the
model fit (Table 3), it did facilitate a forecast given
the delay of six years as indicated in the
crosscorrelations.

The highest crosscorrelations between In CPUE
and winter ice at delays of 0 and 6 years can be
discussed in relation to the effects of ice cover on
fishing activity and stock productivity. The relationship
with no delay was negative and it is reasonable to
assume that heavy ice in a given year might adversely
affect fishing activity and CPUE. Optimal fishing
grounds, in whole or part, would be inaccessible and
effort diverted to fishable but less productive areas
resulting in lower CPUE.

Extensive ice cover in cold years possibly
contributes positively to survival of larvae and
juveniles in the same year and the effect can be
detected in the CPUE several years later (the mean
age of shrimp in the catch is about 6 years).
Mechanisms, however, are only speculative at this
stage. Perhaps extensive ice cover serves simply to
retain larvae and early juvenile stages within preferred
areas (i.e. within the first 50 m) prior to settlement,
thereby enhancing recruitment to the fishable stock.
In a slack ice year, retention might be reduced and
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dispersal of larvae and juveniles to hostile
environments (i.e. lower survival) could be extensive.
The ocean generally responds to climate variations
through changes in the shelf stratification that, in this
region, are due mainly to salinity changes, resulting
from variations in ice formation and subsequent
melting. During the melting period of a heavy ice year,
the salinity cycle generally shows upper-layer
salinities that are fresher than normal during spring
and summer. This tends to increase the stratification
and, hence, the stability of the water column, which
is usually required to initiate and maintain maximum
primary production within the euphotic zone. An
adequate balance between nutrient supply and primary
production would create favourable conditions for the
survival of shrimp larvae in the upper water column.
A recent study by Ramseier et al. (2000) showed that
the extent of localized sedimentation of particulate
organic carbon (POC) can be derived from information
about ice cover. Given that POC is known to be
important to the distribution of shrimp (Butler, 1971)
and likely plays an important role as a food supply, it
is possible that the explanation of the functional
relationship is related more to nutrient supply than
temperature-related phenomena. This would help
explain the apparent inconsistencies between in situ
observations, which suggest "cold conditions" are
favourable for shrimp, and laboratory studies, which
indicate that larval growth and survival are enhanced
at higher temperatures (e.g. Wienberg, 1982; Nunes,
1984).

Failure of models that correlate environmental
indices with some measure of recruitment is notorious.
Pitfalls related to the difficulties in obtaining reliable
estimates of recruitment for true production systems
(as described by Frank, 1997) are minimal in the
current modeling exercise. The crosscorrelations of
CPUE and the input series of winter ice cover
identified a delay of 6 years, which was used only
inferentially with respect to recruitment as might be
reflected in future CPUE, an index that includes
several year classes. Myers (1998) noted that
correlations with temperature that "held up" under
re-analysis tended to be associated with populations
close to the northern (i.e. cold: expect a positive
relationship) or southern (i.e. warm: expect a negative
relationship) limits of the species range and used
northern shrimp in the Gulf of Maine as an example
of the latter. Although shrimp off the mid Labrador
coast are not at the limits of the geographic range
in a north-south context, they are restricted within the
area to a preferred temperature/substrate range.

Positive effects of "cold conditions" were evident in
both the Gulf of Maine and Labrador Shelf habitats.

Forecasting fishery performance and stock
abundance for northern shrimp is a desirable adjunct
to the stock assessment process. Assessment
methodology for shrimp, currently used in eastern
Canada and by NAFO, interprets and evaluates
multiple indicators of stock performance to produce
an overall, qualitative evaluation of resource status
(Savard and Parsons, MS 1999; Koeller et al., 2000).
However, most indicators reflect current status while
relatively few address prospects for either recruitment
(males) or spawning biomass (females). Despite a lack
of information on future trends in shrimp stocks, long-
term expectations by "stakeholders" are immense.
Unfortunately, forecasts are never perfect and it is
important that they be used cautiously and are not
overemphasized during fisheries management
planning. Myers (1998) commented that the rare use
of environment-recruitment correlations to predict
recruitment in assessments is evidence against their
general usefulness. This is likely true for conventional,
analytical assessments but must be reconsidered in the
context of a process that considers multiple stock
performance indices, possibly involving non-linear
environmental interactions.

Shrimp populations react to environmental
perturbations. The model presented here addresses a
possible response to the physical/biological
environment that should be periodically reviewed as
new data become available to test its durability and
investigate alternatives. Incorporation of an input series
for predator abundance, another important factor in
shrimp population dynamics, also should be given high
priority.
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