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Abstract

The task of applying subjective knowledge in predicting the number of trawl samples per
stratum that minimises the coefficient of variation (CV) of the abundance estimator was
considered. The constraint was the vessel time available. It was assumed that the strata biomass
means, arbitrarily scaled, are the only unknown parameters needed to find the optimal solution.
The concept of a subjective prediction distribution of the unknown stratum means was
introduced. The distribution was described as person-dependent and determined based on
intervals [L, U] for the minimum and maximum subjectively predicted biomass values compared
with the true measured values found after the predictions. The approach assumed a constant
subjective confidence level defined as the probability of covering the true value in a random
interval. A pilot subjective prediction experiment was conducted during the 1998 shrimp survey
in the Barents Sea. Based on 62 [L,U] predictions of shrimp biomass in the next trawl haul
combined with the true biomass, the subjective prediction distribution for the cruise leader
was estimated. The distribution was applied to the stratum predictions for the next survey.
10 000 random predictions of true strata means were simulated from the distribution. For each
simulation, CV values of the abundance estimator were estimated based on relative strata
means predicted from historical data as well as the subjective predictions. A significant CV
reduction was obtained based on a combination of subjective prediction and historical data,
compared to the use of historical data alone.
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Introduction (Cochran, 1977, Thompson, 1992). This solution is

To get as precise an estimate as possible of shrimp
abundance in large areas, effective sampling strategies
are of vital importance due to limited vessel time. The
case where the study area is divided into predetermined
geographical areas (strata) was considered here. The
problem was to predict the number of samples in each
stratum that minimises the coefficient of variation (CV)
of the abundance estimator of biomass in the entire
study area, combining historical data and subjective
prediction. In each stratum it was assumed that the trawl
samples are independent observations that provide
unbiased estimates of the unknown sample stratum
mean and variance.

If the cost of providing a sample is neglected, a
well-known result in stratified sampling is that the
optimal number of samples in a stratum is proportional
to stratum area and stratum standard deviation

often denoted as Neyman allocation, after Neyman
(1934). For trawl surveys in large areas, the stratum-
dependent sailing time between trawl stations is the
main cost. In this case the optimal solution is not given
by an explicit "plug-in" formula, but must be found by
numerical methods (Harbitz et al., 1998). It turns out,
however, that the optimal solution in this case deviates
negligibly from the Neyman allocation unless there are
extreme relative differences between strata areas and/
or between stratum standard deviations (Harbitz et al.,
1998).

Survey data supported the assumption that the
strata standard deviations are proportional to the strata
means with a proportionality constant independent of
strata and year. In this case the parameters needed to
determine the Neyman allocation are the relative strata
means, i.e. the stratum mean in each stratum divided
by the sum of strata means in all strata. If the estimated


http://journal.nafo.int

140 J. Northw. Atl. Fish. Sci., Vol. 27, 2000

relative stratum means appear to be quite similar from
survey to survey, relative stratum means in future
surveys may be predicted from historical data even if
abundance varies between surveys. If scientists or
others have qualified reasons to doubt that we can
predict the relative strata means from past data, due to
environmental changes or other reasons, the challenge
faced is how to utilise such subjective knowledge to
improve these predictions. A major goal of this paper
is to outline a method to quantify the person-dependent
ability of subjective prediction in statistical terms.

The approach in this study is to establish a link
between subjective data and real measurements of
biomass, based on subjective prediction experiments.
Each subjective observation simply consists of a
minimum, a most likely and a maximum predicted
biomass value for a future parameter, e.g. the shrimp
biomass in the next trawl haul or the stratum mean. A
major assumption is that the subjective confidence
level, i.e. the expected relative proportion of the data
where the true parameter value falls within the interval
limits, is a person-dependent constant independent of
stratum and survey. The better subjective knowledge,
the smaller interval width is predicted.

Based on data from experiments as described
above, the concept of a subjective prediction
probability distribution of the unknown parameter is
introduced, where the term probability has a classical
frequentistic interpretation. Based on subjective
predictions for the strata means in the next survey,
along with historical trawl data, a combined prediction
for the unknown relative strata means is constructed.
When the combined predictions are established, the
corresponding optimal number of trawl stations in each
stratum are calculated.

In order to assess the effect of applying subjective
prediction, simulations based on a case study with real
historical trawl data and subjective prediction data
from shrimp surveys in the Barents Sea were
performed. Based on subjective prediction intervals for
a future survey, along with an established normal
subjective distribution fitted to the intervals, the future
values of true relative strata means were simulated. For
each simulation, the CV of the abundance estimator
was calculated based on: 1) proportional allocation
(non-stratified sampling), 2) optimal sampling based
on historical data, 3) optimal sampling based on
historical data and subjective prediction, and 4) optimal
allocation based on the true relative strata means. A
comparison of the different CV distributions from the
simulations were used in order to study the effect of
the 3 first approaches, which are all applicable in

practice then compared to the CV distribution obtained
from optimal allocation based on true strata means.

The main focus is optimal allocation, but the
concepts developed can easily be extended to a
Bayesian framework for inference about the unknown
abundance, by applying the subjective prediction
distribution as an a priori distribution. After the data
from the survey are available, we can construct the a
posteriori distribution of abundance conditional on
trawl data, and e.g. calculate a credibility interval of
specified level for the unknown abundance. Because
the prior has a frequentistic interpretation based on
data, contrary to the vague concept of subjective
probability often used in Bayesian analysis, it is now
meaningful to define the bias of the predicted
parameter with respect to the prior. If it is unbiased,
the posterior mean will be unbiased as well. Bayesian
inference (Carlin and Louis, 1996) is becoming
increasingly popular within fisheries science
(McAllister and Kirkwood, 1998), not least due to the
accelerating development of computer-efficient
Markov Chain Monte Carlo techniques (Gilks, 1996).
This makes the approach attractive also in cases where
the subjective prediction distribution is used as a non-
conjugate prior.

The subjective prediction approach can also be
applied in an adaptive setting (Thompson and Seber,
1996), where new subjective predictions are made
before each new stratum is reached, and an optimal
reallocation of effort within the remaining strata is
performed.

Material and Methods

Notations

i = subscript for stratum, i = 1,..., m

Jj = subscript for survey, j = L.,

/ = summation index over strata

m = number of strata

Y = biomass in kg from trawl haul

Y = empirical stratum mean of Y-values

m = stratum mean, EY

s = stratum standard deviation, std(})

s = 1) empirical standard deviation, 2) subscript

for subjective
= available vessel time
trawl and handling time at each station
vessel sailing speed between trawl stations
subjective biomass prediction interval
modal subjective predicted value
= lower subjective probability = P(y < L)
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= upper subjective probability = P(u >U)
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m
1

interval factor in the relationship (U-L) =
elQU+L)/2

= subscript for relative

= proportionality factor in relationo =k
chi-square sum

= standardised subjective prediction variable
= (u=(L+U)/2(U-L)

subjective prediction distribution of i

NO =
1

= o
[

= number of samples in stratum i
total number of samples in survey j
area of stratum i

24, = total area of all strata

area covered by one trawl haul

4 = true abundance in total area
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subscript for historical
= superscript for estimator
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The survey data

The shrimp biomass data were from annual trawl
surveys in the Barents Sea in the period 1992-99. The
area was divided in m = 6 fixed geographical areas, or
strata (see Fig. 1 and lower row of Table 1). The total
number of trawl stations (biomass observations) varied
between a minimum of 92 (1999) to a maximum of
138 (1996). The minimum number of observations at
one single stratum was 7, while the maximum was 59
(Table 1). The estimated stratum means and standard
deviations are given in Table 2. Aschan and Sunnana
(MS 1997) give a description of survey design and
trawl technology.

In 1998 a pilot subjective prediction experiment
was conducted where each of 4 persons reported a
minimum value, L, a most probable (modal) value, M,
and a maximum value, U, for the biomass they
predicted in the next trawl haul. The 4 persons included
two scientists (the cruise leader and another biologist),
the captain and the chief mate. All persons predicted
independent of each other. As a basis for their
prediction the biomasses from the previous haul and
the previous year were easily available. Of particular
interest was the cruise leader data, because this person
had the authority to determine the effort allocation. A
sample size of 62 (L,M,U) was reported by the cruise
leader, and a similar number for the other persons.

The optimal number, N;, of trawl stations per
stratum

Let u’, denote the abundance estimator for shrimp
biomass abundance, K4, in the entire study area:

ij: 571"(141'/140) M

KME

1l
—_

I

where 5_/1 is the biomass sample mean from the N, trawl
stations in stratum i, 4, is the area of stratum 7, and 4,
is the standardized area covered by a trawl station. All
biomass samples were assumed to be stochastically
independent.

The results in Harbitz et al. (1998) are applied in
order to determine the N,-value in each of m
predetermined strata that minimise the CV of the
abundance estimator for the entire area under the
constraint of a given vessel time, ¢, available. For a
given abundance, [, this is synonymous with
minimising the variance

Var(,ul)=2crf'(Ai/A0)2/Ni ()

where 07 is the stratum variance, i.e. the variance of
biomass from a random trawl haul in stratum i. The
general problem in stratified sampling is that the
stratum variances are not known. It was assumed that
the optimal solution deviates negligibly (Harbitz, et
al., 1998) from the Neyman-allocation N, 01 4,0,.
Further, a proportional relationship 0 = kp between
stratum mean and standard deviation is found to be
reasonable (see Fig. 2), where k is independent of
stratum and year. The optimal solutions are then
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Fig. 1. The strata for the shrimp surveys in the Barents Sea
1992-99.
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TABLE 1. Number of samples in each stratum. Barents Sea shrimp surveys 1992-99. Stratum areas in 1 000

naut. m? are shown.

Stratum

Year A B C D E F
1992 16 12 10 24 33 37
1993 22 11 12 26 23 33
1994 11 10 12 22 24 22
1995 14 8 8 22 29 22
1996 11 9 8 29 59 22
1997 14 7 9 10 40 15
1998 16 8 10 17 29 29
1999 8 11 14 14 30 15
Area [1 000 naut. m?]  6.73 4.71 4.00 9.34 11.48 9.58

TABLE 2. Sample strata means (L) and standard deviations (G[)) in kg per trawl haul from Barents Sea shrimp
surveys 1992-99. The standard deviations equal the square root of sample variances with »-1 as denominator.

Stratum
Year A B C D E F
1992 p 21.8 37.1 56.8 28.6 65.7 28.7
ol 15.9 23.0 33.5 24.4 28.9 20.0
1993 p 14.5 26.2 45.2 17.0 47.7 10.8
ol 12.9 13.1 333 12.4 26.3 6.8
1994 p 19.9 11.0 13.3 8.8 30.4 13.1
ol 16.6 6.5 85 7.8 22.0 13.5
1995 p 9.7 11.5 18.0 17.6 40.8 15.1
ol 6.5 9.5 20.1 19.9 29.7 14.6
1996 p 23.0 10.8 32.5 24.3 68.6 28.1
ol 22.7 6.3 17.8 21.9 37.0 19.2
1997 p 12.5 41.0 25.4 27.4 50.7 21.3
ol 12.5 36.7 10.5 26.1 474 14.3
1998 p 16.9 39.4 53.7 23.3 81.4 58.1
ol 14.7 28.9 37.0 24.0 51.5 329
1999 p 16.0 27.4 41.1 16.2 59.3 18.0
od 10.5 21.0 26.0 15.4 41.8 13.9
proportional to the relative stratum means, compared with the minimum CV value obtained by

Njoe<p,;=p;/>u,as the only unknown parameter
(see Appendix eq.(11)).

As a measure of precision the coefficient of
variation, CV( H; ) was applied:

std(uey )
Hy

ev(ky) = )

where W, = Z,[(4,/4,). The equation above combined
with simulations was used to study the effect of
different approaches to predict the p, -values, to be

using true values for the |, ,.

For brevity, the vector notation 1, = [W,,,...,H,,,] is
used to denote what was called the relative stratum
mean vector. The main focus in this paper is to outline
how reasonable predictors, ,ui, for W, can be
constructed based on a combination of historical data
and subjective predictions.

The historical predictor, 1,

For a given survey (year), the ratios p, =Y,/
YY;, i=1,..,m, are the natural ratio estimators for
the corresponding unknown relative strata means, ;.
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Fig. 2. The relation between empirical stratum means
p* = y;and standard deviations o* =5 with the
fitted curve ¢ =0.725- u from the shrimp surveys
in the Barents Sea 1992—-99.

In most cases these estimators have a negligible bias
due to the rather large total number of samples from a
survey. For the same reason, we may construct

. * .
reasonable estlmators,cﬁh, for the variances,

Gfm = var(ufﬂ]). Some mathematical details are given
in the Appendix.

If Y, has a negligible variation over years, we may
improve the precision of the empirical relative strata
means, W ,°, by applying a linear combination of these
from several years. Each survey is weighted
proportional to the total number of samples from that
survey. In order to assess if i, has changed over years,
a chi-square test can be applied, where one option is

to include only the succeeding last years for which the
test is not rejected in the predictor for the next survey.

The subjective prediction distribution for

In order to illustrate concepts and terminology, the
attention is first restricted to an unknown stratum mean
M to be subjectively predicted. To quantify the
prediction ability of a given person, the following
simple and practical measures (data) are used: the
minimum, L, the most probable (modal), M, and the
maximum, U, predicted values for [ are reported. The
subjective prediction distribution introduced, f,(1), is
conditional on [L,U]. L and U correspond to the
probabilities o = P(U<L) and 3 = P(p>U), which define
the subjective confidence level, 1-a—f. Two basic
assumptions are:

1. The shape of (1) and the probabilities a and 3
are constant for one and the same person, and
independent of [L,U], stratum and survey.

2. The subjective distribution for prediction of the
outcome from a single trawl haul is transferable to
the corresponding distribution for a stratum mean.

The first assumption can be illustrated as follows.
A "risk-willing" person will tend to provide narrow
intervals, corresponding to a low confidence level.
Contrastingly, a "cautious" person will tend to predict
large intervals with a high confidence level. In addition,
a person will adjust the interval width according to
strength of belief in the actual situation. The
assumption can be examined by repeated subjective
prediction experiments, where the "true" value (or at
least an unbiased estimate) can be measured. Due to
the many trawl samples during a survey, single trawl
haul predictions are suitable to obtain reasonable
estimates for a, B and the shape of f,.

The second assumption implies that if it is found
that e.g. a normal distribution is appropriate in the
single trawl haul situation, it will also apply to the
stratum prediction situation, where estimates for a and
3 may be applied from the single trawl haul predictions.
Again, repeated experiments can be used to assess this
assumption.

Motivated by single trawl haul predictions and true
values (Fig. 3), it was now assumed that a normal
distribution N(l,0,) was a reasonable approach for
/.(1), that the interval width U-L was approximately
proportional to the mid value p = (L+U)/2, and that
o = B. Note that for a given interval [L,U] it is now
meaningful to consider f,(1) as a probability density
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A) Sixty-two subjective prediction intervals [L,U] for biomass in next trawl haul as a function

of corresponding modal predicted value, M, for cruise leader in the 1998 subjective prediction
experiment. The corresponding true biomasses are plotted as dots. B) Histogram of standardised
variable z based on data in left panel, with fitted normal distribution (see text for description).

function of U in a classical frequentistic sense. Over
time a long series of predictions can be expected for
which [L,U] is constant, where the unknown [l values
behave as independent stochastic variables, following
the subjective prediction distribution conditional on
[L,U]. As a consequence of these assumptions, the
interval mid value [ _ in addition becomes an
approximately unbiased estimator for .

The subjective relative prediction vector is

Hps = [urlsﬁ"'a lunns] = [usl""’ lJ'sm]/zlus] (4)
where subscript s denotes subjective, and Y, is the mid
value of the subjective prediction interval [L,,U,] for
M-

It is assumed that the subjective prediction
intervals for different strata are uncorrelated. For
sufficiently narrow intervals relative to the
corresponding mid values, approximate variance

expressions Jf; for var(u,,) analogous to the

historical predictor case can be constructed (see
appendix for mathematical details).

The predicted optimal number of trawl stations in
each stratum

It is now possible to outline how [, is predicted
by a combination of historical data and subjective
prediction. The eleme*nts in *the comb};ned relative
prediction vector | Hycs... e |/ 2 ) Hye are deter-
mined as a linear combination of g and p,, i=
1,...,m, where subscript C denotes "combined". The
weights are based on the involved variance estimates,
i.e.
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where K is a normalising constant to ensure that
Z:UZC =1and the other elements are defined
previously. If more than one survey is involved in the
historical predictor, the corresponding variance
estimators are a linear sum of the variances from each
survey, with weights equal to nj/an, i.e. proportional
to the number of samples in survey j. Once the elements
of the combined relative prediction vector are
determined, eq. (11) in the appendix is applied
with u,; replaced by yfjc in order to estimate the
optimal number of stations within each stratum. Note
that if the variances involving subjective prediction are
much larger than the variances based on historical data,
the combined predictor is close to the historical
predictor, and vice versa.

Simulation of the CV reducing effect of subjective
prediction

The goal of introducing subjective prediction in
the context that were outlined is to reduce the CV of
the abundance estimator, CV(i, ). In order to study the
effect of I, simulations are performed based on a case
study where [, has changed from 1, in the past to [,
in the future situation where the survey is conducted.
It is assumed that the subjective prediction distribution
is normal with the true mean. The unstratified situation
(proportional allocation) was also included, N, O 4,
corresponding to a relative stratum mean vector [, =
[1/m,...,1/,m],as a reference. The simulation then

proceeds as follows (see Appendix for mathematical
details):

1. Choose an appropriate stratum relative mean
vector pi, = [t ... iy ] based on historical
data, and calculate the corresponding variance

estimates, o-f;, for each stratum, i, see eq.(13).

2. Establish [L,U,;]-data based on subjective
prediction, and calculate the subjective prediction
vector W, = [y, s |- Estimate the corres-
ponding subjective variances, cyf,:,, for each
stratum i, see eq.(20).

3. Determine the combined relative vector [ . from
eq.(5) based on step 1 and 2 and determine the
predicted optimal number of stations in each
stratum, see eq.(11).

4. Simulate a random true stratum relative mean
vector W, from the subjective prediction
distributions in step 2.

5. Repeat step 4 n, = 10 000 times, say, and
compare the distributions of CV(u’,) based on

Hrh’ I""rC and p‘rO'

r4’

Results

The relationship between the empirical strata
means and strata standard deviations are shown in Fig.
2, along with the fitted line 0 = A = 0.725.

The hypothesis of a constant |1, value in the period
1992-99 estimated by applying eq. (16) and a
simultaneous 5% test level was rejected for the years
1993 and 1996. Therefore the three last years were used
to estimate W, providing the vector

W, =1[0.073, 0.175, 0.190, 0.109, 0.305, 0.148] (6)

All 4 persons who participated in the subjective
prediction experiment appeared to provide intervals
which tended to have widths (U — L) proportional to
the mid-value (L + U)/2. The cruise leader appeared to
have the best result in terms of lowest interval factor
(e0= 0.74) combined with the largest subjective
confidence level (66%). When translating her [L,, U]
intervals by replacing the M, values with the previous
haul value, Y,—1, or the last year value, Y1397, the
subjective confidence level was reduced to 44% and
52%, respectively. This is a promising indication of
the potential in applying subjective prediction in this
case.

Attention is now restricted to the cruise leader
results and the application of these. Based on her 62
(L, M, U)-values the following results were found:

1. o7=0.19, " =0.15
2. U-L=074-(L+U)/2

3. Negligible bias, mean ((Y — (L+U)/2)/(U — L))=
-0.004

4. Negligible deviation between M-values and
interval mid values.

The intervals as a function of the modal values,
M, are shown in the left panel of Fig. 3, along with the
true y-values. In the right panel of Fig. 3 the estimated
standardised subjective distribution of z = (y-(L+U)/
2)/(U-L) with a fitted normal distribution is shown.
Because allis close to B[] we let o = B = .17 in the
simulation of the effect of applying a normal subjective
prediction distribution in a new survey. The standard
deviations 0, to be used are then

(U, +L)/2
2071(0.83) (7
i1=1,..,m
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where L, and U, are the subjective lower and upper
borders of the predicted stratum means and ®* denotes
the inverse cumulative standard N(0,1) distribution.
Based on subjective predictions by the cruise leader,
the following relative mean vector was used:

M, =[0.093, 0.155, 0.207, 0.078, 0.363, 0.104] (8)

with corresponding €-values 0.181, 0.208, 0.250,
0.250, 0.179 and 0.488.

The magnitude of the estimated subjective
variances involved appeared to be quite similar to the
variances based on historical data.

Random values for the future y value in each
stratum were simulated from the appropriate normal
distribution with expectation value (L+U)/2 and
standard deviation 0, given by eq. (19). For each
simulation the CV values were calculated based on
proportional allocation (U, ,), predicted optimal
allocation based on |, predicted optimal allocation
based on a combination of historical data and
subjective prediction (W,.) and optimal allocation
based on true values (H,,). The results of 10 000
simulations are shown in Fig. 4. The time available for
the survey was chosen to be 250 hr, the vessel speed
between stations to be 12 naut. mile/hr and the trawling
and handling time at each station was set to 7, = 1 hr.
As can be seen, a considerable improvement was
obtained by applying subjective prediction, despite the
rather small difference between |, and .

Discussion

In order to assess the properties of the estimator
k" and the assumption of a chi?(m) distributed test
statistic, O, a gamma distribution may be fitted to the
normalized biomass values Yy / )71.]. and then simulated
from the corresponding gamma distribution for 3 with
empirical values used as true parameters. This has in
fact been done, where the gamma distribution with
shape parameter ¢ = 1.9 appeared to be a fairly good
approximation to the normalized biomass values, not
least due to a rather small number of zero observations
(2.8%). The details of this exercise is omitted, partly
to shorten the paper and partly because the results have
no impact on the results presented in the paper.

A major basis for the approach to quantify the
statistical properties of subjective prediction was the
assumption of a relatively constant subjective
confidence level. This means that a person who
becomes more skilled with experience will tend to
provide more narrow prediction intervals, while the

same subjective confidence level is maintained. Only
experience over time can assess the assumption of a
constant subjective confidence level.

Another basic assumption was the transferability
of the subjective distribution from the simple single-
value prediction of Y to the prediction of the stratum
mean, J. An intuitive feeling is that if a normal
subjective prediction distribution is appropriate in the
single value case, the assumption of a normal
distribution is also reasonable for the p—predictions.
Again, this assumption can be assessed by experiments,
but a quite long time period is required. The larger
number of persons who seriously perform such
experiments, however, the shorter will be the time
needed to make this assessment.

For simplicity independent subjective predictions
between strata were assumed. If the basis for the
predictions is related to e.g. migration between strata,
this independence assumption is dubious. An
overestimate of the emigration effect from one stratum
to another will correspond to an overestimate of the
immigration effect into the other. As a result, the
variances based on independence might become too
small, overemphasising the subjective prediction
ability.

At least at an early stage many will hesitate in
trusting subjective prediction too much. A general
approach is then to determine some limitations on
maximum influence. As an example one may limit the
influence so that the combined vector Y . is not
dominated by the subjective vector [,.. One way to
obtain this is to scale the relative variances 0,, > by a
common factor so that none of them become smaller
than the corresponding historical variances, g,,>. In
this way the relative subjective variances between
strata are maintained.

It is possible to extend the use of subjective
prediction as outlined here to adaptive sampling
designs. One approach would be to make new
subjective predictions before the first trawl haul in each
new stratum, to be used in order to determine the
optimal number of trawl stations in the next strata. As
more strata are finished, the new biomass values can
be implemented in the estimate of the historical
predictor [ ,. Note that this approach is not in conflict
with obtaining unbiased estimates of abundance.

The concept of a subjective prediction distribution
can also be extended to make inference of the
abundance, [,. Let [L ,, U,] be an unbiased subjective
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Fig. 4. Simulations of CV (m;) distributions based on different predictions of relative strata mean vector m,, based
on 10 000 simulations of true strata means from cruise leader's subjective prediction distribution (see text).

prediction interval for L, consistent with corresponding
intervals for each stratum. The subjective prediction
distribution f,(1,) can then be used as a prior in the
Bayesian sense, and we may use e.g. a 95% posterior
credibility interval for |1, as an inference measure for
M,. Because it is reasonable to assume that the
distribution of u, based on data is normal, a normal
prior will be a conjugate prior. The construction of a
credibility interval is then straight forward. Due to the
frequentistic interpretation of f(K,), it is now
meaningful to say that the posterior expectation value
is an unbiased estimator of | ,.

In principle, the concepts outlined could also be
extended to multi-species surveys. In this case,
however, a more complicated criterion for optimal
allocation must be defined properly, along with an
appropriate incorporation of possible co-variation
between samples of the different species.
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Appendix
Mathematical Details

Optimal number of trawl stations per stratum

The task considered was to minimise the abundance estimator variance:

var(uy) = Y 07 (A, 4))’ | N, ©)
i=1

under the constraint of a given (constant) vessel time, ¢, available:

t= zm: N, +%i [A,N, (10)
i=1 i=1

The two sums above are due to trawling and sailing between trawl stations, respectively, where ¢, is the
(constant) trawl and handling time at each station and v is the (constant) sailing speed between trawl stations.
The trawl stations within each stratum are assumed to be located at the intersection points in a square grid.

It turns out (Harbitz ef al., 1998) that the optimal solutions are very close to the Neumann-allocation N, I
A,0,00 A1, applying the relationship o = kL

ri’

2

(2

2
4Vt 13, A
, TR " (an
2vto 2 Ay (21 A, /Hﬂ)

AR A N i=1,

‘o

The rather complicated expression in the above equation is due to the non-linear and stratum-dependent
expression t; =(+JA;/ N;|/v for the sailing time between successive stations in stratum i.

Variance expressions for the historical predictor, p_,

The following approximate expression for the variance of y, = Y,/Y Y] is applied:

Var(,u;) = ,ulzi . Var[ﬁ—&], i=1,..,m (12)
B Xy

where the sums are over strata. The expression above is based on a Taylor-expansion of #; to second order with
respect to the two ratios within the brackets (Cochran, 1977). The accuracy of the approximation is strongly
dependent on the CV of the latter ratio, which involves all observations from a survey. The approximation is
therefore assumed to be reasonable.

Based on the relation 0 = k|, the variance in the equation above is estimated by

* * [(*2 * * .
vart (ty;) = g == (1= 24 N, X (aaf / Np), =1y (13)

1

where the sums are over strata. The estimator £* for k is a weighted least square estimator based on the natural
logarithmic values of the empirical stratum means, V.o and standard deviations, 8
1 d

nyr m N
kK =exp ZZ(zy&y]log(%/')—/ﬁ) (14)

J=1 i=1
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where i denotes stratum and j denotes survey. The reason for the log-transformation is the apparently more
constant variance oflog(s]./) compared to the increasing variance of s,; With respect to )71], (Fig. 2).

Hypothesis test of constant |1, over years

The question of utilising historical data to predict W, in a future survey is now faced. First it is assumed as
a working hypothesis that |, has not changed during the period for which there are data:

. ; 15
Hy “Hpy = Hps ./=1’---vnyr (15)
where [, is constant. As a test statistic, apply
(/Un :ur/h) . (16)
E J=1...n,

j=1 var* (luflh)

that is assumed to be approximately chi-square distributed chi2(m) with m degrees of freedom. In order to test H,
an "ad hoc" procedure is first used in order to estimate [,,, which weights each stratum mean proportional to the
total number, n, of observations from survey j:

. T
Hin =X é n” . i=1..m (17)
J

where the sums are over surveys. To test for possible differences between years, apply the test statistic Q in eq.
(16) replacing . with th and perform one test per survey. f, is rejected 1fQ is larger than e.g. the upper . 05/
fractile in the chi2(m)-distribution for any of the years. If H is rejected a more detailed analysis is requlred
providing another predictor for 4, e.g. pt, " from the last survey(s)

Mathematical details for the subjective prediction distribution

As previously noted in the main text, it is assumed that the widths, U-L, of the subjective prediction intervals
are proportional to the mid value |

U-L=¢(L+U)2=¢p, (18)

where € denotes the proportionality constant and is easily estimated from the subjective prediction data. Under
the assumptions that p~ N(ug,0,) and a = B, the following expression is obtained for ¢ = var(p):

2
2 _ _[eu+1)i2 (19)

An appropriate estimator 0'52,* for G? is found by replacing € and 3 by estimators based on experimental
data. Analogous to the variance estimator for the historical predictors in eq. (13) we now get the following
estimators for o2 = var*(u,;)

2% 2* 2%
G%/; = Var*(llris) = Iﬁis : G_Ig -2 cgs + 2/ s 7 | i=1..,m (20)
Hijs His 2. Hys (z/ /,1/5)

where the sums are over strata. The expression above is reasonable for sufficiently narrow intervals relative to
the mid values, and when the subjective predictions for one stratum are independent of the subjective predictions
for any other stratum.
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