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Abstract

The probability distribution for biomass of many marine species varies in space, partly as a
function of bottom depth. A non-parametric method is described for using trawl survey data to
estimate the probability distribution at any point in the survey region whose bottom depth is known.
Integrating the expected value of the distribution over the region provides an estimate of the biomass
in the region. Repeated sampling from the estimated distributions at the survey points enables us
to compute a Monte Carlo confidence interval for the biomass. For two surveys of northern shrimp
in NAFO Div. 2HJ, these methods produced confidence intervals that are narrower than those
computed using methods based on stratified-random sampling and an assumed Gaussian distribution.
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Introduction

The biomass of northern shrimp off the east coast
of Newfoundland and Labrador is estimated from
stratified-random bottom trawl surveys carried out
annually in autumn. These are multi-species surveys,
and the strata have been designed to serve the needs
mainly of gadoid and flatfish assessments. Standard
stratified-random calculations have been used to
compute unbiased estimates of the mean and variance
of catches (e.g. Smith and Somerton, 1981).
Confidence intervals for the integrated abundance in
the stratum are computed assuming a Gaussian
distribution. However, it is common to find that a few
very large catches make the Gaussian assumption
dubious, and lead the confidence intervals to include
negative values. One might make some other
assumption about the form of the probability
distribution (pdf): for example that it is a delta,
negative binomial or gamma distribution. However,
all of these models make parametric assumptions
about the probability distribution of observations
larger than those observed: assumptions that are rarely
well supported either by theory or by the bulk of the
data. For example, in a lognormal distribution with a
mode of 1, an observation of 0.01 should lead one to
'‘expect' a balancing observation of 100. Is this what
we really think? Model-based estimates of the mean
and variance can be biased if the wrong model is
assumed. In another approach, Smith (1997) has
produced stratified confidence intervals using

bootstrapping, which replaces parametric assumptions
about the pdf with the assumption that there is no
possibility of values other than those observed.

An assumption common to all these estimation
procedures is that the pdf is constant within each
stratum. People often wish to relax this assumption
as well, interpolating between the observations to
obtain a smooth picture of how concentration changes
with space. Such a procedure is especially attractive
if the stratum boundaries are not appropriate to species
being assessed. Simard et al. (1992) and Cadigan
(1999) reported applications of continuous local
weighting of observations to Atlantic Canada fisheries.

This paper extends the idea of continuous local
weighting to the whole probability distribution, not
just its expected value. It is driven by the view that
we have no trusted statistical model either for the
probability distribution for shrimp density at a point,
or for how this distribution changes over space. We
therefore try to be as non-parametric as we can.

Methods

A preliminary note on overloaded terms. The word
'distribution' is commonly used to refer either to a
pattern in space or to a probability distribution, i.e. a
pattern in the value of some arbitrary variable. In this
paper, we use 'distribution' to refer only to a
probability distribution; a distribution in space is
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called a 'spatial pattern'. The word 'density' can refer
to mass of shrimp, per unit volume or area, or to a
probability density. In this paper 'density' means a
probability density, and mass per unit area is called
'concentration'.

The Data

Multispecies, bottom-trawl surveys have been
conducted off eastern Newfoundland and Labrador
annually during autumn. Since 1995, stations were
sampled with a Campelen 1800 shrimp trawl. Details
of the survey design and fishing protocols are given
in Brodie (MS 1996). Figures 1 and 2 show the
distribution of catches within Div. 2HJ, which include
the shrimp fishing grounds of the Hopedale and
Cartwright Channels, in 1998 and 1996, respectively,
with respect to horizontal position and depth. Most
good catches were within a restricted range of depths.
In this analysis we assume that the distribution and
spatial pattern of shrimp catches represents actual
concentrations, ignoring all questions of catchability.

The Problem

Shrimp move, and the instantaneous pattern of
their concentration changes with time even during a
survey, and certainly well before the results of the
survey can be used to guide decisions. The
instantaneous pattern is one realization of a random
process; and we take the view that the underlying
process, the spatial pattern of probability distributions
for concentration, does not change during the survey.
The task is to estimate this stable pattern of probability
distributions.

We use the collection of estimated probability
distributions in two ways. First, integrating the
expected value of the distribution over a region gives
an estimate of the biomass it contains. Secondly, a
Monte Carlo simulation that resamples, at every
survey point, from the whole probability distribution
estimated at that point, provides a new simulated
survey and thence a new abundance estimate. An
ensemble of many such estimates provides a
probability distribution for the estimated abundance.
The whole method is here called "ogmap" (for 'ogive
mapping'; Rice and Evans, MS 1995).

The Statistical Model

What is the probability distribution of a random
variable p (shrimp concentration) and how does it
depend on some covariate g (position)? Note in
passing that this is also the problem posed by ordinary
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linear regression, which answers it by saying: "The
distribution is Gaussian and its variance is constant
and its mean is a straight-line function of ¢". In this
paper we estimate an answer with much less theory
about the form either of the distribution or of its spatial
pattern (it is not possible to operate without any theory
at all). The trawl sets are assumed to be independent
random samples from the probability distributions at
the locations of the sets. They are not identically
distributed because of the spatial pattern of the
distributions; but to make any progress at all we
assume that nearby distributions are related.

We use the local, non-parametric methods
introduced by Evans and Rice (1988) and given their
fullest description in Evans (MS 2000). The
cumulative distribution function (CDF) F(p) is the
probability that a value chosen at random will be less
than p. If the covariate g were irrelevant and all p,
were independent and identically distributed, then
F(p) could be estimated from the data with the
empirical distribution function: the fraction of the
observed p, less than p. The CDF is a step function
with steps of equal height 1/n at each p, where n is
the number of samples. More formally, following
Davison and Hinkley (1997, equation 2.1), the CDF
is estimated by:

ﬁ(p)=%§ Hp-pi)

where H(z) is the Heaviside function: 0 for z < 0 and
1 for z > 0. To incorporate g-dependence, we replace
the equal step heights 1/n by local weights based on
kernel smoothing, assuming that the nearer an
observation is to the target g, the more relevant it is
for estimating the distribution at gq. The estimate of
the CDF is then:

- SH(p-p)w(d(q,q;))
B P = @)

a step function whose steps heights, w, are a decreasing
function of some measure d of the distance between
g, and g. (Notice that the mean of F,(p) is obtained
by replacing the function H(p — p,) by the number p,,
and that this is precisely the formula for kernel
smoothing to estimate the mean (Davison and Hinkley,
1997, equation 7.24). Thus the definition of F,(p) is
an almost inevitable combination of two standard
ideas. The step sizes depend only on the distances
between g and the different g; the step locations
depend only on p,.
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(A) Catches of shrimp in Div. 2JH in 1998. The area of the symbol is proportional to the catch in the set

located at the center of the symbol. (B) The catches of panel (A) plotted as a function of depth and
longitude. (C) Map of the estimated mean value of the probability distribution for catch as a function of
space. (D) The Monte Carlo distribution for expected mass integrated over the region.

We use the weighting function w(d) = ¢ and the
distance function:

fo xS y-y)’ (z2-2)

Sh S,
where (x, y, z) are the longitude, latitude and depth of
the target point and (x, y, z,) of the i survey point.
S, and S| are horizontal and vertical distance scales,
or bandwidths, that describe how far local influence
extends: for an increase in horizontal distance of S,
or of vertical distance S, the step height decreases by
a factor of 1/e.

Choice of bandwidths. 1t remains to choose the
S, and S, that give as accurate a representation as
possible of the probability distributions. As is
common, we use jackknife cross validation, which
deletes each observation in turn, predicts it from the
rest of the data, and compares the prediction with the
deleted observation. There are (at least) two measures
of performance: (1) the difference between the
observation and some point prediction like the mean
or median of the computed distribution; (2) the
(cumulative) probability of a value no larger than the
observation. The observation should be a random
sample from the distribution. A single number cannot
be tested for randomness; but, if the observation is
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(A) Catches of shrimp in Div. 2JH in 1996. The area of the symbol is proportional to the catch in the

set located at the center of the symbol. (B) The catches of panel (A) plotted as a function of depth and
longitude. (C) Map of the estimated mean value of the probability distribution for catch as a function
of'space. (D) The Monte Carlo distribution for expected mass integrated over the region. The abscissa
in Fig. 2D extends to higher values, reflecting the uncertainty due to the two very large catches.

random from the distribution, its cumulative
probability is uniformly distributed on [0,1]. Thus we
ask if the set of all the cross-validated probabilities is
UJ0,1] (Rice and Evans, MS 1995).

This uniformity requirement is in fact more
important than obtaining a small point prediction
error. If the variances of the distributions are
underestimated, then Monte Carlo simulation using
them will overestimate the accuracy of estimates.
Another way to look at it: the desire for a small
squared prediction error is a matter of convenience —
we hope that the estimated pdf turns out to be usefully
narrow; the desire for an acceptable x* is a matter of

correctness — we need to estimate the correct pdf,
however inconvenient it turns out to be. The
uniformity requirement provides a guard against the
risk of over-fitting if we tried to match the predicted
central value alone.

The symptom of underestimating the width of the
distribution is that too many probabilities are close to
either 0 or 1. We therefore use a X test designed
specifically to detect such a pattern, based on a
grouping of probabilities into 3 groups: 0-0.2, 0.2—
0.8, 0.8—1. Large bandwidths lead to uniform
distributions and, typically, to larger prediction errors
— although the prediction error is much less sensitive
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than the distribution error. So we choose the narrowest
bandwidths that produce an acceptable 1. By
'acceptable' we do not mean simply that it is impossible
to reject it at some stringent probability level like 0.95.
We need to produce our best estimate of the width of
the distribution, not the narrowest one we think we
can get away with. So instead of accepting any X
less than 6 (the 0.05 value with 2 degrees of freedom),
we accept only those values not much greater than 2
(the expected value). We found that S, = 30 km and
S, =25 m was acceptable for the 1996 and 1998 bottom
trawl surveys of Hopedale-Cartwright.

Integration. We cover the region with a Delaunay
triangulation from vertices whose positions and depths
were measured during bottom trawl surveys in 1996—
98. For each triangle, we compute the expected value
of the distribution at every vertex, and then integrate
the expected value for shrimp mass within a triangle
using bilinear interpolation. The expected value of
the biomass in the whole region is then the sum over
all triangles.

Results

Results for shrimp in Div. 2HJ (Hopedale-
Cartwright) are presented for 1998 (Fig. 1), when
there were no unusually large values among the
catches (the largest catch was less than twice the third
largest), and for 1996 (Fig. 2), when the two largest
catches were 6.9 and 2.8 times the third largest. Maps
of estimated biomass density are presented in Fig. 1c
and 2c, and distributions of the re-sampled Monte
Carlo biomass estimates in Fig. 1d and 2d. Table 1
shows the point estimates, medians, and upper and
lower limits of the 95% confidence interval, both for
ogmap and for the stratified-random Gaussian
inferences. The Monte Carlo estimates differ slightly
from those reported in Parsons et al. (MS 1999), which

used a preliminary guess at vertical bandwidth that
was subsequently determined to be too wide. Even for
1998, when stratified-random methods seem to work
well (Parsons et al., MS 1999), the ogmap confidence
intervals are smaller. This is not implausible: ogmap
is not committed to Gaussian distributions, and it can
in principle take account of finer spatial details (more
information on covariates) than the fixed stratifi-
cation.

Discussion

The intuition behind using a continuous approach
rather than rigid stratum boundaries is that a location
near a stratum boundary ought to be more like a nearby
(taking depth into account) observation in an adjacent
stratum than like an observation at the other end of
its own stratum. Particularly for shrimp surveyed
under a groundfish stratification, this intuition seems
appropriate. However, if observations are assigned to
some strata out of proportion of their area (because of
a wish to have at least two observations per stratum
for variance calculations, or deliberately oversampling
strata known to have high variance), then an analysis
that does not confine the influence of observations
within stratum boundaries can be biased.

Our approach differs from kriging, which sees its
task as estimating the particular realization of the
random process. Kriging makes different assumptions
and asks a different question. The variance of the
difference between two observations is assumed to be
a function only of their (possibly vector) separation.
When there are large regions where the shrimp catch,
and therefore the variance between nearby catches, is
predictably zero, and other regions of moderate and
occasionally high catch with high variance between
nearby stations, we would not wish to make this
assumption of intrinsic stationarity (Bailey and

TABLE 1. The single best (point) estimate of biomass, and the median and confidence limits,
for biomass of shrimp ('000 tons) in Hopedale-Cartwright in 1998 and 1996, as
determined by ogmap with Monte Carlo resampling and by the traditional random-

stratified calculations (strap).

1998 1996
ogmap-mc strap ogmap-mc strap
0.025 61 66 -66
0.5 84 153 192
point 86 155 192
0.975 110 335 451
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Gatrell, 1995, p. 162). The objective in kriging is to
estimate a particular realization of a stochastic spatial
process: "to add a local (error) component to our
prediction ... in addition to the mean" (Bailey and
Gatrell, 1995, p. 183). We believe that the particular
realization is not stable enough to be worth estimating;
only the spatial pattern of the probability distribution
is of interest.

The approach of Cadigan (1999) is in some ways
similar to ours. He also assumes that there is an
underlying spatial pattern in pdf to be estimated, and
that the trawl sets are independent random samples
from related distributions. The main difference is that
he takes a parametric form for the pdf and assumes
that all but one of the parameters are constant over
large areas, whereas we allow everything about the
pdf to vary spatially. Cadigan (1999) also assumes
that there is a small probability of large catches that
is constant, not only within a survey but also between
surveys in different years. Under this assumption he
gets a more reliable handle on the occasional large
catches — worthwhile if true. (As with all parametric
assumptions, more information put in, if it is true,
leads to more coming out.)

There is no right way to treat very few very large
catches. If large catches are influential for estimates
of total abundance (and in many fisheries studies they
are), then an accurate estimate of abundance depends
on an accurate knowledge of the pdf of such catches. It
is not possible to get such an accurate knowledge from
very few observations, no matter how clever we are.

It would be possible to include covariates other
than position and depth, if they were known at enough
points to make the triangulation and integration
possible. Bottom type is a good candidate (and is being
investigated now for sessile species). Bottom
temperature is not, because it is not known at points
that were not surveyed.

Sci., Vol. 27, 2000

The key question is, of course, do 95% of the
confidence intervals computed in this manner in fact
contain the true value of total biomass? This has not
yet been investigated.
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