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Abstract

The need for quality data from fisheries abundance surveys for the rational manage-
ment of the world's major fisheries resources has been steadily increasing. The limitation
of fish resources and the heavy exploitation pressure put on these resources have forced
the industry to change and adjust strategy accordingly and to develop new and more effi-
cient fishing gears and fish finding instruments. Earlier, the assessment and management
was based on models which utilized data primarily from the fishing fleet. However, the
lack of continuity and stability caused by the continuously changing fishing techniques,
creates uncertainty for the management decisions based on catch data.

The experience from 30 to 40 years of scientific surveys has shown that this source of
information also involves a great deal of uncertainty. The need for improvements in sur-
vey methodology is crucial for improving assessments of all major fish stocks. The great
limitation in improving the reliability of survey based abundance estimates is the vari-
ability and inconsistency of the data collected at sea. In the development of acoustic sur-
veys the policy has been to continuously improve the technical equipment. New technol-
ogy has been introduced when sufficient calibration exists so as not to seriously disrupt
the time series. In contrast, standardization has been the most dominant philosophy in
bottom trawl survey history. Therefore new technology and information has been difficult
to implement in survey equipment and procedures.

The main challenge in the next century will be to update survey methodology with
state-of-the-art technology. Further, combining information from different sources will be
the greatest challenge for new research, for example combining data from acoustic and
bottom trawl surveys. Underwater observation technology (video, laser, electronic tags,
automatic underwater vehicles etc.) will greatly improve our insight on the efficiency and
variability of standard survey methodologies. A major difficulty will be to distinguish
between and make decisions on the need for additional monitoring and/or modelling based
on new technology and information.

Keywords: f ish behaviour, catchabil i ty, management, stock assessment, surveys,
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Introduction

The growing human population has increased the pressure on the commercially most important fish
stocks. The total world catches has leveled out during the last decade, and a high percentage of the most
productive fish stocks are categorized as depleted or overexploited (see e.g. FAO, 1997). At present, a
substantial increase in world catches is unobtainable without improved management, i.e. sustainable har-
vesting of already exploited resources. Sound and sustainable management depends on a high level of
knowledge and, most importantly, reliable monitoring of the state of the stocks through scientific surveys.

The use of scientific abundance survey data is an important aspect for assessing the present state of a
stock for most of the commercially important species. The quality of survey data has in most cases not yet
been considered good enough for a "stand alone" assessment. Normally, indices of abundance are used to
tune VPA or other types of catch-at-age models (see e.g. Hilborn and Walters, 1992). In such models,
uncertainties in the final assessment are due to the inherent uncertainties in all the model inputs.
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When stock management fails, lack of knowledge and understanding of the ecosystem dynamics and
environmental influences have often been presented as the main explanations (e.g. cod in the Barents Sea,
late-1980s and off Newfoundland in the beginning of the, 1990s, see Jakobsson et al., 1994). In many
areas, therefore, development of multi-species or ecosystem models has been given great attention during
the last decades (Laevastu and Larkins, 1981; Bogstad and Tjelmeland, 1993; Anon., MS 1997). Such
models need quantitative information from surveys on relationships between species and size groups to be
able to model interactions. Normally, survey data are presented and used as indices of abundance and not
as absolute measures of stock size or composition (Doubleday and Rivard, 1981). In such cases, it is
assumed that surveys reflect relative changes fairly accurately.

The knowledge and information on survey limitations for supplying absolute information on relation-
ships between size groups or species has substantially increased recently (see e.g. Walsh et al., 1993;
Fernø and Olsen, 1994). Such information has been used to improve survey methodology and to point to
new areas of future research. However, any development in management, single species or advanced eco-
system modelling, is presently strongly limited by the quality of the observations obtained from the un-
derwater reality.

At the United Nations conference on environment and development in Rio de Janeiro, the focus was
on the human impact on bio-diversity (UNCED, 1992). Further, the FAO focus on the precautionary ap-
proach in fisheries (FAO, 1995a, b), stresses the importance and need for improved monitoring and as-
sessment of marine resources effects in the future (see also West, 1998). Such monitoring will put new
demands on future scientific surveys related to inter-specific representativeness of survey samples.

When survey methods were developed, basic knowledge on underwater sampling gear performance as
well as fish behaviour in the catching process was limited. Rigid survey standardization compensated for
all the problems associated with catch and effort data from the trawler fleet, and the strategy was a tre-
mendous step forward on the way to obtain quality data on fish stock abundance and composition. The
instrumentation for direct observation and monitoring of underwater phenomenon was very limited. Thus
survey methodology was associated with a blindfolded sampling technique which needed rough assump-
tions related to efficiency of trawls and stability of fish behaviour and distribution. Today many of the
assumption can be verified or compensated for through better observational methods and survey designs.
The resistance against using such knowledge is normally strong due to fear of corrupting a long time
series.

In this paper, the current "state-of-the-art" survey methodologies will be considered in an historic
perspective. The potential of utilizing new techniques in future surveys is discussed. Implementation of
new technologies and techniques in existing surveys is given specific attention.

Observation Methods and Their Limitations

Our inability to directly observe underwater reality greatly limits our ability to measure the status of
fish stocks. Estimates of stock abundance are for most commercially important stocks obtained from stan-
dardized surveys. Bottom trawl and acoustic surveys are most common, followed by different static gears,
such as pots, gillnets and long lines. Instrumentation and methods have emerged in recent years that have
enlightened the limitations in present standard survey methodology.

Abundance Surveys in a Historic Perspective

The idea of using dedicated effort to measure and monitor fish abundance is old. At the end of last
century, a dispute on the possibility of reducing fish abundance by fishing was tested by means of a
trawling experiment in Scottish coastal waters (Fulton, 1898). However, as long as an expansion in the
commercial fleet was possible, effort was more focused on exploring for and exploiting new resources.
Nevertheless, causes of variation in exploited fish stocks were put on the agenda at the beginning of the
century due to fluctuations in landings of some of the large oceanic stocks (Hjort, 1914). After World War
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II serious signs of stock depletion in many areas raised concern on the effect fishing had on fish popula-
tions. Development of population dynamic models (Beverton and Holt, 1957), initiated systematic moni-
toring of many important fish stocks. Under the international organizations like ICNAF (International
Commission for the Northwest Atlantic Fisheries) and ICES (International Council for Exploration of the
Sea) for such monitoring started at the end of the 1950s (see e.g. Anon., MS 1959, Anderson, 1998). The
use of catch data to establish the historical trends of stocks and catch per unit of effort (CPUE) to evaluate
the present state of stocks was found to be problematic. The efficiency of the commercial trawling effort
improved continuously and the fishermen's strategy changed continuously to optimize profit. Further-
more, migratory and distribution patterns will often make the assumptions for a standard CPUE analysis
invalid (Ulltang, 1977). Consequently, analysis of CPUE data from the commercial fleets may produce
misleading estimates of abundance trends.

The philosophy of standardized surveys is that they minimize the variability typical for commercial
fisheries data and thus generate more consistent indices of stock abundance (Doubleday and Rivard, 1981).
Routine bottom trawl surveys were set up around the beginning of the, 1960s, first in East Coast American
waters, and later in all the productive fishing areas for demersal fish (see e.g. Doubleday and Rivard,
1981; Alton, 1986; Gundersen, 1993; Pauly, 1988).

The development of acoustic methods for monitoring the distribution and density of fish in the post
World War II period opened the way for its use for stock assessments (Dragesund and Olsen, 1965). The
method is mainly used for pelagic fish but has also wide application for semi-pelagic gadoids (Simmonds
and McLennan, 1996; Godø and Wespestad, 1993). For demersal species distributed in areas where trawl-
ing is impossible and acoustic method do not apply, surveys with static gears have been tried (see e.g.
Quin et al., 1985; Hovgård and Riget, 1992; Engås and Løkkeborg, 1994; Somerton and Kikkawa, 1995).

The basic assumption in bottom trawl survey methodology has until now been that a rigid standard-
ization of equipment, procedures and routines minimizes the effects of the variable, unknown, and unseen
underwater reality. To what extent this approach reduces variability sufficient to make them trustworthy
can only be tested through long experience or through improved understanding of the underwater reality
by direct observation. The basic approach to trawl surveys has not changed fundamentally in its 100-year
history. Acoustic surveys, in contrast, have been characterized by a tremendous development in equip-
ment, and technical improvements have continuously been implemented because the positive effect on
survey results have been obvious, and the consistency of the time series has been maintained through
calibration procedures (Foote et al., 1987; Simmonds et al., 1992).

Commercial CPUE

Yearly commercial CPUE estimates are often considered to be a time series of abundance indices
similar to those produced by standard routine surveys. For example, in tuning procedures the weight given
this series as compared to survey series is estimated based on their ability to reflect past variation in stock
abundance. With the establishment of a long time series of survey indices, commercial CPUE indices
normally lose their importance in assessments. Often the data obtained from the fleet are pooled with
resulting loss of detail on sources of fleet variability. The equipment and strategies varies within the fleet
and over time, which without documentation is impossible to analyze. The calculation procedures for
estimating the CPUE index are thus based on pooling and averaging grounded on very rough assumptions.
Due to the steadily increasing efficiency of the fleet and its ever changing fishing strategy to optimize
income from limited quotas under strict regulation of catch and by-catch, the reliability of a CPUE index
of abundance is very questionable for many important stocks. In addition, such indices have been shown
to be misleading with respect to changes in demersal stock abundance, often caused by changes in distri-
bution and migration patterns which have been observed to takes place in stressed fish populations (Ulltang,
1977; Rose et al., 1994).
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Standardization and Assumptions in Surveys

Standard surveys are all built on simple equations where an observation parameter (d) is assumed to be
directly related to true the density of fish (D).

d = kD (1)

where k is an adjustment or efficiency factor with different meanings depending on the survey method.
The extent of standardization varies between surveys but normally include restrictions on vessel type and
size, sampling gear, time period for the survey, procedures for launching and retrieving the sampling gear,
sample treatment, and data analysis. Some of the basic assumptions are:

• efficiency of the sampling gear is constant within the frames set by the standardization,

• all or a constant proportion of the population is available to the sampling gear over time and between
surveys,

• a fixed survey period removes seasonal variability, and

• when a standardization regime is followed temporal integrity of abundance estimates is maintained.

When data are utilized in multi-species or ecosystem models, more assumptions have to be added, for
example related to differences in catchability between size groups and species.

Trawl Surveys. A trawl survey is the most wide spread method for the assessment of a demersal fish
stock. In this method k (Equation 1) is related to the survey trawl's catching efficiency (q). For swept area
estimates, Equation 1 can be written:

c = q D a (2)

where c is the trawl catch, and a is the area swept by the survey trawl, and q is the catchability coefficient.
If fish are also in the water column above the catching height of the trawl (Fig. 1), it is convenient to split
the efficiency between an availability   (q

a
)  and an efficiency element   (q

e
)  (Godø, 1994).

    q = q
a

⋅⋅ q
e

(3)

Due to lack of exact information, a (in eq. 2) is often assumed to be the area swept by the trawl's
wings or doors during a standard tow, and q is given the value 1 or a more or less arbitrary value (Gunderson,
1993). Due to the importance of this method for stock assessment, the assumptions underlying trawl sur-
veys have been thoroughly studied in recent years. Studies have concentrated on issues relating to the
trawl itself (sampling trawl geometry and performance, and trawl catching efficiency) and the response of
fish to the trawl. In the following some documented divergences from the basic assumptions of trawl
surveys will be presented.

The trawl. During the first 20 to 30 years of standardized trawl surveys the possibilities for monitor-
ing the geometry and performance of trawls were very limited. Indirect measures of, for example warp
angles, gave indications of the spread of the doors. But to a great extent the integrity of survey results
remained dependent on the assumption of  survey consistency. Studies of trawl performance and geometry
by modern acoustic trawl instrumentation have demonstrated some fundamental disagreements with the
basic assumptions. Trawl geometry measures, like wing spread and trawl height, are never constant (Godø
and Engås, 1989; Rose and Walters, 1990;  Koeller, 1991). Most commonly, the area swept by the trawl
increased with depth and hence density estimates for deep water were systematically overestimated com-
pared with those in shallow water. Also, obvious lack of stability in trawl performance, such as unstable
bottom contact and error in measured tow duration, was discovered when gear performance was system-
atically monitored (Engås and Godø, 1986; Walsh et al., 1993). Such instability is normally caused by
uneven bottom conditions or by the construction or rigging of the gear itself and may contribute substan-
tially to the imprecision of the survey indices. Monitoring of trawl geometry has become standard in
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Fig. 1. Observation windows of a bottom trawl, a hull mounted acoustic transducer and sonar. Difference in verti-
cal distribution of fish affect performance of the different methods.

many surveys, but there is still reluctance to change equipment or procedures to reduce its effects (Walsh
et al., 1993), although there are examples of the implementation of new techniques (Engås and Ona, MS
1991; MS 1993; Mehl and Nakken, 1996). The key question is to what extent a change in procedures
invalidate a survey time series. However, the documented fact is very clear; the original standard proce-
dures created systematic errors in standard survey indices due to for example depth dependent trawl ge-
ometry, and random errors due to for example variable trawl performance.

The catching efficiency relates the catch to the actual fish density in the area swept by a trawl tow
(Equation 2). If this relationship is a function of size or species, a selection process take place. Trawls are
very selective sampling gears. Size and species selection may occur at all stages after the fish appear
within the zone influenced by the trawl; for examples at the doors, sweeps, trawl opening and mesh selec-
tion within the trawl. Often, commercial fish or shrimp trawls have been chosen for a survey. Mesh selec-
tion has been studied for a long time and, normally, its effect has been limited in survey trawls by intro-
ducing a new small meshed cod end or a small meshed liner in the old cod end. Due to the unknown
effects of selection, it is normally assumed that efficiency is independent of species and size, or at least
that efficiency remains constant by species and age. Selectivity studies of survey trawls have revealed
very strong size and species dependent differences and, in particular, low efficiency for small fish. The
loss of small fish has been shown to occur both by escapement under the trawl  (Engås and Godø, 1989a;
Dahm and Weinbeck, MS 1992; Walsh, 1992a; Godø and Walsh, 1992; Erich, MS 1987) (Fig. 2), and in
the sweeping zone of the trawl (Engås and Godø, 1989b). When growth rates change over time, inconsis-
tency in time series indices of abundance by age will arise (Godø and Sunnanå, 1992). Such species and
size differences will, in many cases, create great uncertainty in eco-system models which depend on sur-
vey results.

The fish (natural fish behaviour). The natural behaviour of fish may affect trawl surveys in many
ways. Few of these effects have been studied and none adequately for a quantitative assessment. For trawl
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Fig. 2. Measured efficiency difference of old vs new Norwegian sam-
pling trawls with respect to size dependent escapement of fish
under the trawl (ratio = old/new).

surveys, it is normally assumed that fish behaviour varies according to certain patterns, and that a stan-
dardized survey is not affected or consistently affected from year to year. Two factors, which appear to be
of great importance for survey abundance time series, are variation in availability   (q

a
)  (Fig. 1) and changes

in organization structure.

For northern gadoids, changes in availability potentially may strongly bias survey results (Godø and
Wespestad, 1993; Beamish, 1966). In some years, for example cod might be concentrated at the bottom
and available for bottom trawling, while in other years much of the stock might be distributed pelagically
well above the headline height of the trawl (Godø and Wespestad, 1993; Karp and Walters, 1994). There
are additional complexities  in how to treat data from surveys due to the uncertainty related to the effec-
tive catching height of the trawl (Aglen, 1996). Substantial and  varying avoidance of pelagically distrib-
uted gadoids to trawling noise has been observed (Ona and Godø, 1990; Nunnallee, 1991; Godø and Totland,
MS 1996). The problems connected to unavailability may also affect "true" demersal species like flatfish,
as they have been found to distribute high up in water column during certain periods (Metcalfe et al., MS
1994).

It is well known that commercial bottom trawl catches are highly variable and often have a strong
diurnal component (see e.g. Parrish et al., 1964; Walsh, 1991; Engås and Soldal, 1992; Michalsen et al.,
1996). Repeated tows at same location demonstrate this, and Godø et al. (1998) suggest, for example that
5–7 trawl stations are needed to stabilize estimates of density and other stock parameters for gadoids.
Seasonal changes in CPUE may be independent of stock abundance as it, for example, appears to be for
the commercial CPUE of cod in the Barents Sea. CPUE seems to change very fast over time for unknown
reasons (Fig. 3). Periods of unexpected low catchability could be caused by unavailability. Acoustic re-
cordings of fish in the pelagic zone would then be expected, while anecdotal information from the fisher-
men indicates that under such circumstances recordings of fish are scarce. If such changes in catch rates
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Fig. 3. Change in CPUE of cod by month as observed in the Norwe-
gian bottom trawl fleet in, 1986 by Subarea.

occur independent of variation in stock level, they might also substantially affect survey indices. It has
been speculated that catchability  (q

e
)  is affected by the internal organization, i.e. whether the fish are

distributed as single individuals or in patches or schools. Schools react collectively and organize based on
group stimuli while individuals have a more random reaction pattern and a higher escape rate during the
catching process (Godø, 1994; Aglen et al., MS 1997). Similarly, comparison of catches from static gears
(longline and gillnets) and trawls have shown that trawls might have high catches when static gears are
unprofitable and vice versa. It is quite clear that variation in fish behaviour may cause unforeseen varia-
tion in survey CPUE in contrast to the basic assumptions. Quantification of its effects on survey results
and even understanding the dynamics of the problem is presently very limited.

Acoustic. The estimates of abundance obtained from the acoustic method rely on the recorded re-
flected energy from fish as a measure of biomass density (acoustic back scattering cross section). The
basic acoustic relationship is usually rewrites Equation 1 as:

   S
A

= ρ σ (4)

where  S
A

is the acoustic index (the average back scattering cross section per naut. mile2), ρ is the area
density of fish, and σ  is the conversion factor (average backscattering cross section per fish). Perfor-
mance is poor in the near bottom zone and close to surface (Aglen, 1994; Ona and Mitson, 1996, Fig. 1),
and thus the conversion factor  for a acoustic survey depends on an availability and an efficiency factor:

   S
A

= ρ ⋅ ∝ σ (5)

where ∝ measures the proportion of fish available to the acoustic beam.

Studies of the acoustic methodology have shown disagreement with the underlying assumptions con-
cerning instrument performance, particularly in relation to fish distribution, behaviour and biological
characteristics of the fish.

Instrument performance. For acoustic surveys, σ  relates the acoustic signals to fish density and is
correlated with the size composition of  fish obtained from trawling. Instrumentation in acoustic surveys
thus includes the electronic instruments as well as the gear used for sampling the recorded fish.
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In acoustic surveys, stable performance is assured through standard calibration (Foote et al., 1987).
However, reduced performance can be caused by bad weather conditions mixing air bubbles into the sur-
face water. A weak layer of bubbles might seriously affect results (Ona, 1994). The increasing beam vol-
ume with depth reduces the actual reflected energy from small targets, and the effective sampling volume
for varying fish sizes might changewhen noise thresholding is applied.

Normally a trawl or another selective gear is used to sample the acoustic recordings. Thus, the reli-
ability of the estimated abundance by size and species depends on the representativity of the samples
given by the trawl sampling. Splitting of the acoustic recordings by species is normally done either from
characteristics in the appearance of the recordings or based on the fish samples. Misinterpretation may
occur, for example wrong splitting by species when visual appearances are similar (MacLennan and
Simmonds, 1991). Therefore, the reliability of estimates from acoustic methods depends on the same
factors as discussed under bottom trawl surveys. The problems connected to pelagic sampling, which is
the most common sampling method in acoustic surveys, are in principle the same as for bottom trawling
although the  factors may vary in importance (see e.g. Aglen, 1994; Simmonds et al., 1992; Foote and
Stefansson, 1993). In mixed pelagic stocks there is a great deal of complexity related to obtaining correct
representation by species (Masse and Retiere, 1995). Stock organization (i.e. schooling or non-schooling)
season and light condition are factors of great importance for catchability. In addition are the assumptions
involved in collection and treatment of the acoustic data (Simmonds et al., 1992)

The reflected energy depends on the performance of the acoustic instruments and the acoustic proper-
ties of the recorded fish. The acoustic properties of fish are assumed to follow standard size dependent
relationships. Recent studies have shown and quantified the dependency of reflected acoustic energy on
biological characteristics (gonad development, fat content, stomach fullness) and depth. Some of these
factors will thus vary seasonally (gonad development and fat content) while others will vary diurnally
caused by light influenced vertical migration (Ona, 1990; Huse and Ona, 1996).

Fish behaviour. As for the bottom trawl survey, the performance of the acoustic survey can be im-
paired by the inability of acoustics to cover the whole vertical distribution of fish. The∝ factor relates the
ability of the instruments to record fish under different distribution and/or avoidance patterns. Pelagic
fish may "hide" in the near surface layer (Misund, 1994) and demersal and semi-demersal fish  in the
bottom zone (Ona and Mitson, 1996; Godø and Wespestad, 1993). If a varying fraction of fish distribute
in these zones over time, it might seriously affect the consistency of survey results (Fig. 1, Aglen, 1994).
If fish react to an approaching vessel with a horizontal (Ona and Toresen, 1988) or vertical (Ona and
Godø, 1990) avoidance movement a "dilution" of the real fish density in the observation window has been
measured. When avoidance reaction is away from the survey vessel as in Fig. 4, the fish tilt angle will
change. The backscattering properties of the fish are seriously affected by any change in tilt (see e.g.
Aglen, 1994 for overview).

Fixed Gear Surveys. In fixed gear surveys it is assumed that a relationship between the true density
and the catch of a standard effort unit exists. That is:

c = D k (6)

For fixed gears, a contact and eventual catch depends on the level of fish activity. For baited gears,
the current conditions and setting strategy in relation to the current are also decisive factors for the effi-
ciency of the gear (Engås and Løkeborg, 1994; Engås and Jørgensen, MS 1997). As suggested above, the
contrasting differences in efficiency of static and active gears emphasize the importance of variation in
natural behaviour on abundance indices generated by static gears. As the efficiency of static gears is so
greatly dependent on variation in the behaviour of the fish and their environment, it is reasonable to
believe that the effects of varying behaviour are more pronounced for static gear surveys.
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Fig. 4. Horizontal and vertical avoidance movements (arrows) of fish
out of the acoustic observation volume.

Technology and Future Improvements of Stock Assessment

Better stock assessment can be obtained through new or improved observational tools and methods,
and/or by increasing the basic biological understanding and knowledge. Improved or new observational
tools and methods will generate more reliable data – hereafter called monitoring application. Errors pro-
duced due to rough assumptions connected to survey methodologies can be eliminated or minimized through
changes in gear or by application of  models fuelled  by new and improved basic knowledge. When tech-
nology is used in this way it is called fundament application. Finally, calibration applies technology to
compare gears (e.g. two trawls) or to quantify an effect (e.g. size selection in trawl opening). In this
section some observational techniques not used or under-utilized in standard survey methodology will be
presented. Their potential usefulness for the future development of new and/or improved field observa-
tional methods for estimating stock abundance will be discussed.

Physical Measurements

Physical measurements cover a variety of variables of which I will give an overview of those impor-
tant to trawl geometry and performance as they relate to the three categories mentioned in the last section.

Trawl Geometry. Acoustic trawl instrumentation has been available for more than a decade and is
now used in many surveys (Engås and Godø, 1986, Walsh et al., 1993, Engås, 1994). The most common
monitoring application is for measuring the door/wing spread and trawl height. The application of such
data has varied. The passive user adjusts the catch for the deviance of the measured swept area from the
assumed standard. The active user interactively uses the measurements to adjust the trawl geometry dur-
ing the tow. Presently, this can be done by paying or heaving warp (Koeller, 1991). Technically this can be
accomplished  by an automatic interactive feedback loop between the trawl instrumentation and the winches
(e.g. Scantrol, Bergen, Norway). The drawback of this approach is that door performance will be affected
if the depth – warp scope ratio varies substantially (Engås, 1994). Alternatively, the spreading force of the
doors can be interactively adjusted through either opening and closing windows in the doors or changing
the attack point of the warp bracket on the doors. An acoustic link used in trawl instrumentation has been
developed which can control electrically powered opening-closing devices on doors (Scanmar, Horten,
Norway). Another monitoring approach, which is used in a Norwegian bottom trawl survey, is to use over
dimensioned doors and then lock the spread by attaching a constraint rope on the warp (Engås and Ona,
MS 1991; MS 1993). The length of this rope and its position on the warp can be adjusted to meet the
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'ideal' spread of the doors. An acoustic  sensor is attached to the rope to monitor the height of the rope
above bottom. Thus, the door spread and the warp angle can be kept constant under all conditions (Fig. 5).

Fig. 5. The use of constraint rope (left) with acoustic instrumentation (right) to maintain constant the swept area
and performance of a bottom sampling trawl.

Trawl Performance. Existing trawl instrumentation is used to evaluate and monitor trawl perfor-
mance. The height and spread sensors give good clues on door stability and the stability of bottom contact
by the trawl (Engås, 1994). Bottom contact is a crucial factor for the validity of a standard trawl survey
haul, but the information can be difficult to evaluate due to noise in the data caused by data transmission
(Walsh et al., 1993) and can not be properly monitored with available sensors. A sensor or a series of
sensors attached to the bottom trawl's ground gear which continuously records the on or off bottom condi-
tion is necessary to properly evaluate trawl performance. Demersal fish in front of the trawl search for
escape paths along the ground gear and thus periods of only a few seconds with no bottom contact may
severely affect the catch. A proper on and off bottom sensor system will be important for future evaluation
of the effective area swept by a trawl haul. Development has started and a product will probably be on the
market within few years. Equipment for controlling trawl performance should be developed for monitor-
ing application, i.e. to be used on all tows.

Tow Duration – Swept Area – Swept Volume. The area swept by the trawl is determined by the door
spread and the distance over which the trawl has been towed. The door spread is or should be properly
monitored and kept close to target spread. Presently, the target tow distance is obtained by towing a fixed
time at a measured or assumed speed, or, alternatively, by heaving when the satellite position system
show that the target distance is covered. This gives the most precise speed with respect to the bottom,
which at least should be a proper measure of speed for bottom dwelling individuals. Free swimming fish
might be more connected to the water masses than to the bottom substrate. Thus, the trawl speed through
the water might be more relevant than speed over the ground. Speed sensors that record water flow are
available and can be attached to the trawl and used to determine the speed through water. Also, such speed
sensors split the water movements in along track and transverse track components. The transverse compo-
nent can be used to improve trawl performance, i.e. side current is eliminated by regulation of scope or
tow direction.

By means of the measures of speed obtained from GPS (Global Positioning Systems) and underwater
speed sensors, the trawl movement relative to the water current can be derived. Fish behaviour is known
to be strongly affected by current (see e.g. Arnold, 1981). Fish often orient against the current to maintain
position when influenced by a strong current. The trawls direction of attack relative to the swimming
direction (or current direction) might be of  greatest importance for the catching efficiency of some spe-
cies. Therefore, standardization of procedures should involve a standard tow direction related to the cur-
rent direction. If reliable current models exist for the survey area (see e.g. Gjevik et al., 1994) these can
be used to predetermine tow direction. Also, instruments for measuring the current in situ are available
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(see next section about Acoustic Doppler Current Profiler (ADCP)) and can be used to determine the
current on site before setting the trawl. The relation of catching efficiency to tow and current directions
needs to be determined as a foundation for improved survey procedures.

Towed distance determines, together with the effective sweeping width, the area swept by the trawl,
and any error in measuring this area will directly affect the estimated density. The uncertainties in the
measures of trawl spread and  trawl bottom contact have been discussed above. In particular, the uncer-
tainty caused by varying bottom contact needs more attention. If varying bottom contact is a problem, a
simple adjustment of the effective  distance towed might be an underestimate of its effect. Fish are known
to swim in front of the trawl before falling back into the codend. Consequently, fish from a much larger
area than that represented by the disrupted bottom contact might be lost.

Auxiliary (Environmental) Variables. Temperature is usually measured during standard surveys. Tem-
perature affects the distribution pattern of fish as well as catchability. In laboratory conditions swimming
performance is known to be dependent on temperature (Wardle, 1993) and in the field catchability is
probably a function of temperature. Individual Northeast Arctic cod are known to experience a tempera-
ture span of about 5–8°C and within day changes of 5°C have been observed (Godø and Michalsen, MS
1997). It is assumed that these temperature effects are stable from survey to survey. However, the distri-
butional changes experienced by, for example cod in the Barents Sea in the late-1980s and off Newfound-
land–Labrador in the 1990s with accompanying dramatic declines in stock abundance are examples in
which temperature could have contributed both to distributional changes and to survey catchability.

   Current is important for odour transport in fixed gear surveys, affects the vertical distribution during
acoustic and bottom trawl surveys, and the catchability of bottom trawl surveys. Current can be monitored
during surveys by means of an ADCP. These instruments are expensive and are seldom used directly or
indirectly in surveys. New cheaper versions, with a more user friendly interface, are about to come to
market (Gordon, 1997). Thus, setting strategies of sampling gears (static as well as trawls) can be decided
based on ADCP readings of the current. Continuous logging of current may also become a useful tool for
evaluating vertical distribution and availability in bottom trawl and acoustic surveys (Michalsen et al.,
1996).

Bottom type can be monitored by acoustic instrumentation (see e.g. Magorrian et al., 1995). Bottom
characteristics affect the distribution of true demersal fish. Thus, monitoring of bottom type acoustically
can improve the stratification of bottom trawl  and fixed gear surveys.

Light is known to be a very important environmental clue for determining the catching efficiency of
trawls (Glass and Wardle, 1989; Wardle, 1993). Light condition during a trawl haul is presently estimated
indirectly from the time of day, latitude, cloud coverage, and water turbidity. Only direct observation of
light at  trawling depth will give reliable information on the light conditions during trawling.

Satellite monitoring of environmental conditions (e.g. temperature, production and ice cover) is fea-
sible. For survey estimation of fish abundance, such data can be valuable in determining survey and sam-
pling strategies. These measures are constantly improved and if relationships between them and fish dis-
tribution and behaviour are established, they can become an important tool in survey strategy and possi-
bly also in abundance calculations. For some surveys, development of survey efficiency models to deter-
mine the most favourable coverage based on the information available before and during the survey may
help when survey resources are limited.

Environmental variables have been used for a long time in, for example recruitment, growth and eco-
system models. Such factors could also be applied to biological data from surveys. Particularly light and
temperature, but also current might become important input variables for future catchability models. The
basic knowledge needed for the development and implementation of such models is presently insufficient,
and laboratory and/or fieldwork for studying fish reaction patterns to trawls under different environmen-
tal conditions is strongly needed (fundament application).
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Observations of Fish Density and Behaviour During Survey and Sampling

With improved and new underwater observation techniques there is a great potential for improving
the sampling techniques for estimating density and  species composition during field studies and routine
surveys. In addition, new techniques can be used to improve understanding and quantitatively assess the
effect behaviour has on survey gear efficiency. Further, as improved methodology replaces old standards,
reliable calibration techniques are needed. As shown above, the present standard assessment paradigm is
built on (assumed) fixed relationships. Improved knowledge and understanding of, for example species
and size dependent behaviourial dynamics, both natural and gear induced, emphasizes the limitations of
such assumptions. Future challenges will be to quantify and implement this type of information into a new
"standard" methodology.

Direct Observation Techniques. These techniques include direct visual observation, photo observa-
tion, video and laser techniques. Since the late-1950s the Russians have developed a towed submarine to
observe directly fish density by size and species (Zaferman, 1979). The observer was "calibrated" using
fish of known size and species. The method has been used for the calibration of survey trawl efficiency.
The uncertainty caused by operating limitations due to light and depth conditions and potential interac-
tion between an approaching submarine and the fish reduces the method’s applicability. In warmer water
and at shallow depths, divers have been used to  observe density and fish behaviour. Diving and subma-
rine technology will certainly develop and improve. However, its application in quantitative biology is
limited due to the restrictions mentioned above.

Photo and video techniques have some of the same limitation as mentioned for direct visual observa-
tion. The applicability of these techniques is however, much wider. Cameras get smaller and more light
sensitive and can be used to directly observe fish behaviour and the efficiency of fixed gear as well as  to
estimate escapement by size and species (Fig. 6). Weinberg and Munro (MS 1997) have done systematic
video studies in an attempt to arrive at efficiency measures of a sampling trawl by species and size. Also
various arrangements with video cameras operated from towed vehicles are used for the same purpose
(Main and Sangster, 1981). More extensive use of digital cameras and automatic software to analyze
videos may substantially improve this method for calibration purposes. Again the limitations of such
studies are the same as for visual studies. Light and depth will, in many cases, set limits to the
representativity of the observational setting as compared with the survey situation. Systematic flash pho-
tos taken during a trawl haul might give valuable information on behaviourial day-night differences (Walsh
and Hickey, 1993), but again there is the uncertainty of the effect that artificial light has on behaviour.

A problem with the above techniques is the estimation of size because the distance to the object is not
known. Camera arrangements for taking stereo photos might improve the three dimensional perception of
the observed volume and hence size determination. Also, combining information from other tools, for
example analysis of simultaneous video and sonar picture might in the future improve distance and size
determination.

The use of lasers in underwater fisheries studies has until now been very limited. In the US lasers
have been tried for crabs, but the results were not  satisfactory with respect to reliability, performance and
cost (Somerton, Alaska Fisheries Science Center, pers. comm.). A Russian development that uses lasers to
study underwater fish behaviour has been reported (Zaferman, 1997). The laser is reported to use light
which does not disturb the fish. The observation distance is asserted to be approximately double that for
video cameras. Lasers also provide improved size determination since they also can be used to measure
the distance to an object.

The use of direct observation techniques has until now been mostly for fundamental application. Our
basic insights on fish behaviour dynamics come, to a great extent, from these techniques. The limitations
caused by light and depth conditions as well as effects the equipment has on target species restricts  the
general applicability of these results. Monitoring application of camera or video techniques to assess
density of sessile or semi-sessile organisms are presently developing for several species. Further develop-
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Fig. 6. A video observation arrangement for monitoring fish behaviour
in the catching process of longlines (Godø et al., 1997).

ment of laser techniques might potentially improve their use in calibration and, perhaps, for monitoring
applications not only of sedentary organisms but also of fish.

Tagging Techniques. Tagging is widely applied in fisheries studies today. Traditional external tags
are used for migration studies, various internal tags and micro wire tags are used for assessment purposes,
and acoustic transponder tags have wide applications in fish behaviour studies (Arnold et al., 1995). No
comments will be made here on these methods but rather concentrate on new developments in electronic
tags. The miniaturization of electronics has opened the way for new tagging applications. Tags, which
store information on environmental, physiological and chemical processes, are attached to the fish and
the recorded data are downloaded after recovery (Anon., MS 1997). Thus, detailed information on fish
natural behaviour or physiological rhythm in relation to its environment can be studied over long periods.
For species that occur close to surface, a light a sensor can be used to determine geographical position
from information on sunrise and sunset (Gunn et al., MS 1994). Also, when the fish have a certain behaviour
in relation to current, fish movements can be modeled quite well (Metcalfe et al., 1993; MS 1994). For
species which are assessed routinely by surveys, it is crucial to know their vertical behaviour pattern for
evaluating the efficiency of different survey methods (see Fig. 1). For acoustic surveys, the tilt angle of
the fish, which can be monitored by such tags, determines an individual’s acoustic property. Figure 7
shows a cod being tagged with a data storage tag (DST) that records temperature, depth and tilt angle
along with a plot of depth and temperature from a tagged fish at freedom for about one year.
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Fig. 7. Data storage tag being attached to a cod (left) and a temperature (blue) and depth (red) time series
after about one year in sea.

Electronic tagging technology will certainly develop quickly in the coming years. Cheaper, smaller
and with more memory, such tags will be able to gather more complex information about an individual
fish. The development of new smaller and better sensors increases the possibility of a fundamental
breakthrough in understanding fish migration and behaviour. Such fundamental applications may lead to
improvements in survey strategies. Within a few years, different solutions for the positioning problem
will probably be developed. Compass, tail-beat, heart frequency, and stomach fullness sensors are ex-
amples of new sensors, which are or will soon be connected to a DST tag. By means of information
collected by electronic tags, new and quantitative information on feeding behaviour, activity patterns and
migration behaviour will be achieved. Presently, uncertainties in survey assessments as well as in ecosys-
tem models are caused by a lack of basic knowledge of conditions in the field.

Combined with the position of fish in relation to a trawling vessel, DST technology could improve our
understanding of fish reaction patterns in the catching process as well as variation in catchability (cali-
bration).

Mass tagging and scanning of commercial catches for recoveries is a method for direct assessment of
fish stocks which presently is restricted to certain stocks due to limitations set by the tag scanning meth-
ods. With new developments in electronic tags, small response tags might be developed that will 'answer'
when 'called' by an acoustic device installed on the fishing vessel or at landing site. Such monitoring
applications might provide independent estimates of stock abundance for species such as cod that pres-
ently are practically impossible to assess with tag and recapture techniques. Development of new elec-
tronic tagging technology is expensive due to the low demand for the finished product. If mass tagging
technology is to be stimulated, international agreements on sharing the development cost might be neces-
sary.

Acoustic Techniques. Fisheries acoustics techniques for stock assessment and fish behaviour studies
have developed tremendously during its roughly 30-year history (see e.g. MacLennan and Simmonds,
1991). It is still a young science with  high potential for improving monitoring applications for fish stocks
as well as fundament applications, for example through enhancing our knowledge on natural and dis-
turbed fish behaviour. This continuously changing technology and hence the potential for instrumental
variability demands proper calibration routines (Foote et al., 1987). Standardization of acoustic method-
ology means calibration routines and not a rigid and restrictive policy of not applying new technology.
Agreements on calibration methods and standards improve the comparability of results obtained world-
wide.
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Fisheries acoustics is the scientist's eye to a stock's underwater reality. Descriptions of the  large
variety of available instrumentation would fill a book. I will focus on giving a brief introduction to those
of considerable interest for stock assessment. A rough overview of different acoustic systems and the
platforms to which they are or may be coupled, are given in Table 1 and in Fig. 8 along with existing and
potential applications. The choice of acoustic system and platform must fit the task to be accomplished.

Abundance and density. The goal of an assessment survey is to estimate  stock abundance. The qual-
ity of such estimates is, however, dependent on many factors that can be classified into the four categories
given in Table 1. Estimation of fish stock abundance by acoustic techniques will, in most cases, be based
on hull mounted transducers. The data obtained from such transducers are often contaminated by noise
caused  by air bubbles in the surface layer generated by wind and waves (Ona, 1994). Even a weak layer
of air bubbles may seriously affect results without being apparent in the acoustic recordings. Towed plat-
forms have been used for a long time to get the transducer below the air bubbles. Platforms are now being
developed which can be towed  closer to the acoustic targets and thereby improve, for example near bot-
tom registration of fish as well as deep water assessments of fish abundance not reachable by hull mounted
systems (Dalen et al., 1995). Transducers mounted on retractable platforms (Ona and Traynor, MS 1990)
are used on research vessels in the US and Norway with great success. Vessel operation  can continue in
rougher weather than before  without any reduction in the quality of the data.

Reliable assessment of fish stocks which distribute outside the observation window of one method,
for example surface distribution of herring above the depth of the hull mounted transducer (Fig. 1), de-
pends on combining information from different sources. Due to difficulties in calibrating sonars com-
pared to echosounders, sonar systems are less useful for direct assessment. However, recent approaches to
measure the dimensions of pelagic fish schools and then estimate their abundance by hull mounted trans-
ducers according to standard acoustic methods, appears promising for several stocks (Misund et al., 1996).

TABLE 1. Acoustic methodology by platform type and application.

Abundance Acoustic Natural Affected
Platform type system density properties behaviour behaviour Migration

Vessel mounted systems
Traditional sounders × × ×
Sonar × × ×
ADCP × ×
Drop sonde with transducer ×

Floating  buoys
Traditional sounders × × ×
Broad band acoustics × × × ×

Stationary systems
Traditional sounders × × × ×
Sonar × × ×
Broad band acoustics × × ×
ADCP ×

Towed vehicles (bodies)
Traditional sounders × ×
Sonar × ×

Automatic vehicles
Traditional sounders × × × ×
Sonar × × ×

Trawl systems
Traditional sounders × × ×
Sonar × ×
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Fig. 8. Acoustic observation techniques attached to various platforms. The echogram shows record-
ings of gadoids partially available to the bottom trawl and the acoustic observation windows.

The combination of sounder and sonar technology is now being further improved, for example by devel-
opment of a user interface, which will reduce the effects of operator bias (Dalen, Institute of Marine
Research, Bergen, Norway, pers. comm.).

Data from several frequencies have been used  to distinguish between fish and plankton. Reliable
technology for quantifying  differences in multiple-frequency displays needs to be developed and evalu-
ated. Such development is now in progress (Korneliussen, Institute of Marine Research, Bergen, pers.
comm.) with the purpose of improved species identification from mixed species recordings, and multiple-
frequency methods may become part of standard survey procedures in the near future. The complexity of
such information makes a visual comparison and evaluation very difficult. Utilization of such technology
is dependent on integration by post-processing systems, e.g. BEI (Foote et al., 1991), which can quantify
and present differences in a systematic manner.

In some situations, the effects and limitations caused by a noisy survey vessel with a hull mounted
transducer seriously restricts our getting a representative picture of a stock. In particular, this is a prob-
lem when fish are distributed close to the surface and in very shallow areas, or if the species is very
sensitive to vessel noise. Many solutions have been tried or proposed, for example using a paravan mounted
transducer, a small boat with a transducer in the surface layer. New technology is now being developed
that use long range automatic underwater vehicles (AUV). Some are low noise electrically powered crafts
which can run with or without contact with the mother vessel. 'Hugin' is such a battery powered vehicle
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Fig. 9. 'Hugin' is a semi-automatic under-water vehicle able to perform a sonar
survey of 36 hours. The data can be transferred via an acoustic link to the
mother vessel and displayed as the survey proceeds.

(Fig. 9) that was developed for the oil industry (see Størkersen et al., 1996). It can run continuously for 36
hours and perform a sonar survey according to a pre-set cruise track. Sonar data are stored aboard but the
data can be sent to the mother vessel via an acoustic link if within range. The vehicle monitors its environ-
ment and can avoid obstacles by changing depth or, go to the surface if a critical situation occurs. In the
future vehicles of this type might be equipped with various acoustic equipment and become important
research tools. A typical example would be to cover water too shallow for the main survey vessel. Con-
straints for survey assessment of major pelagic stocks in tropical areas are due to the shallowness of many
habitats (Freon et al., 1993a). Also, small areas can be covered, for example to study immigration and
emigration to a specific spawning ground.

Properties of the acoustic targets. A lot of work and techniques can and should be implemented to
avoid unnecessary variability in acoustic estimates. Field and meso-cosmos studies show clearly that one
can compensate for the substantial errors caused by varying behaviour and biological properties. Fat con-
tent and gonad development strongly affect the volume of the swimbladder and hence the back-scattering
by the fish (Ona, 1990). These properties vary seasonally and can be measured (Zhao, 1996). Also, swim
bladder volume is related to stomach contents (Ona, 1990), and the bladder expands and contracts with
changing pressure due to diurnal vertical migration (see e.g. Huse and Ona, 1996).

Presently σ  (the back-scattering coefficient) is determined by a length dependent relationship where
fish lengths normally are obtained from trawl catches. There are many problems connected to directly
measuring the acoustic target strength of fish (Anon., MS 1995), however, development and improve-
ments of observation techniques may minimize this source of variability. A major necessity is to come
close enough to the target to reduce the probability of multiple echoes. This can be done by means of
using a drop sonde (a pressure resistant transducer lowered towards the fish) or a deep towed body. To
avoid vessel effects, an acoustic buoy or an AUV can be utilized (Table 1, Fig. 10). Instead of the tradi-
tional narrow band acoustics, broad band systems are now being developed which might reduce uncertain-
ties connected to in situ target strength (TS) determination (Gordon, 1997). In situ TS measurements are
necessary in order to make the acoustic method a totally independent method of stock assessment.
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Fig. 10. Density distribution of fish within the trawl opening of a Norwegian bottom sampling
trawl observed and positioned by a scanning sonar mounted on the headline of the
trawl (from Ona, 1994).

Fish behaviour. Studies of fish behaviour in recent years have demonstrated the need for quantifica-
tion and modelling behaviour to assess its effect on sampling reliability (Fernø and Olsen, 1994). Both
natural and gear induced behaviour may significantly diverge from our basic assumptions (Godø, MS
1994). In addition, migrations during surveys may substantially bias a survey (MacLennan and Simmonds,
1991). There are now under development different types of floating buoys or stationary systems which
can log and/or transfer data over long periods (Table 1, see also e.g. Godø and Totland, MS 1996). These
systems may give valuable information on the variation in vertical distribution and migration. Further-
more, variation in acoustic properties over time can be studied.

The development of computer and acoustic technology reduces the size of equipment and its power
demand, which will make possible the production of small units containing both the acoustic and the data
logging instruments. These units will be placed in floating buoys, on the bottom or attached to sampling
gears. Direct connection to the scientist can be established through acoustic, radio or satellite communi-
cation. This will  become an important tool, both for studying natural and affected fish behaviour. In many
cases escape behaviour during surveys  will be modeled based on quantitative experiments (fundament
applications). For other stocks variability in behaviour might demand the development of monitoring
applications which will routinely measure the effects of escapement on the efficiency of the survey gear.
Ideally, the research vessel should have an AUV to study fish distribution in front of the vessel and a
controllable  body behind  to determine fish reaction patterns. Such set-ups might be possible for special
studies but for routine surveys, equipment and procedures must be simple and straight forward.

The limitations for observing fish behaviour during the catching process were caused by, as discussed
above; the need for light, the small observation volume and the difficulties in determining distances.
Different types of scanning sonars have been used to study fish behaviour (Ona, 1994). They do not have
the same limitations as cameras and, for example diurnal differences in distribution of fish in the trawl
opening can be mapped (Fig. 10). Species identification is not possible, and full utilization could possibly
be obtained by receiving samples from other methods (e.g. random flash photos).

ADCP is normally used to monitor currents in different layers based on particle reflections. Similarly,
if a layer or a shoal of fish is recorded, its movement in relation to the surrounding water can be measured.
Instrumentation and software are now under development to exploit this possibility. Also, recent develop-
ment of broad band split beam acoustics and ADCP are a promising tools for monitoring fish movements
in relation to currents (Gordon, 1997).

Trawl Techniques. Survey trawls are normally adapted commercial trawls. The conflicting goals, i.e.
the industry want a selective trawl catching the valuable fish while the scientist want a representative
sample of the population in the area of trawling, underscore the potential inefficiency of many survey
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trawls to meet basic requirements. The great variety of survey trawls (every survey has its own trawl), is
an additional impediment to utilization of available information on trawl-fish interactions to improve the
design of survey of trawls. Improvements in survey trawl construction must be based on a long-term
development program. Systematic studies from several countries using the same trawl are the best basis
for trawl improvement. An example of such co-operation is the development and use of the North Sea
bottom trawl by all North Sea countries (Anon., 1992). Also, Norway and Canada use the same trawl for
cod in the Barents Sea and off Newfoundland, and Russian scientists are preparing to switch to the same
trawl for their bottom trawl surveys in the Barents Sea. In such cases the potential for future improve-
ments increases due to the possibility of drawing on a larger pool of information. Traditionally, changes
in sampling equipment or procedures have been avoided in most bottom trawl surveys because of concern
that changes would invalidate a survey time series. Recent achievements and new insight into the ineffi-
ciency of applied survey trawls worldwide (Engås, 1994; Walsh, MS 1997; Andrew et al., 1991; Somerton
et al., 1997) have resulted in new sampling gears being employed in several areas. In such cases, the
change has been preceded by calibration experiments so that the new data can be combined with the old
(Godø and Sunnanå, 1992; Warren et al., MS 1997). Normally these experiments use  side by side or
alternating trawling to estimate the differences between the old and new equipment by species and size. In
the future, improved methods for calibration are needed to secure rational and efficient changes.

Variability in trawl catches contribute strongly to the uncertainty of both trawl and acoustic surveys
(Gunderson, 1993). Increasing the number of trawl stations is expensive and in most cases not realistic
due to limited budgets. Shortening tow duration may improve survey efficiency substantially (Pennington
and Vølstad, 1991). The possibility of using shorter tows (see Godø et al., 1990) can also be combined
with new multi-sampling trawl techniques where several samples are taken during one tow (Engås et al.,

Fig. 11. The multisampler – a trawl arrangement allowing several samples to be taken during one
haul. An acoustic link is used to open and close three individual cod-ends (Engås et al.,
1996).
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1996, Fig. 11). This approach could fundamentally improve our understanding of small scale spatial dis-
tribution structure. The temporal resolution of trawl catches might be as important as the spatial distribu-
tion for many species due to the very high variation in both composition and size at one site over time
(Michalsen et al., 1996, Godø et al., 1998). Repeated sampling through the temporal cycle (e.g. day and
night) at selected locations might be an approach to isolate the temporal "noise" in the data. Such ap-
proaches could improve our measures of density and thus abundance.

Light and sound are known to affect fish behaviour strongly (see e.g. Wardle, 1993; Fernø and Olsen,
1994). Different types of devices are used in commercial fisheries to improve the efficiency of fishing
gears, for example light to aggregate pelagic fish before setting purse seines (see Kristiansson, 1968). To
my knowledge very few experiments have been done to improve sampling gear catchability. Light and
sound are known to cause avoidance reactions by clupeoides and gadoids (Olsen et al., 1983; Freon et. al.,
1993b; Ona and Godø, 1990; Nunnallee, MS 1991). When avoidance is toward the bottom, as found for
many gadoids passed by a trawling vessel, this reaction pattern could, for example be intensified by tow-
ing additional sound sources strategically positioned behind the vessel.

It is known that fish may swim in front of a bottom sampling trawl for a substantial amount of time
(Wardle, 1993). The longer fish occupy the trawl opening the greater their chance is of finding an escape
path (see e.g. Walsh and Hickey, 1993). Disrupted performance by the trawl seems to break up any school-
ing fish in front of the vessel, which increases the turnover rate of the fish and hence reduces escapement
(Godø, 1994, MS 1994; Aglen et al., MS 1997). Both visual and sound stimuli might be responsible for
this phenomenon. Tests should be done to try to repeat this reaction pattern by generating disruptive
movements by the gear during trawling. If the hypothesis is verified, the next question will be how to
utilize this knowledge to improve sampling efficiency.

The continuous improvement of underwater observation techniques during the last decades has greatly
contributed to information on fish and trawl behaviour and the interaction between them. Utilization of
this information for improving trawl design and trawling techniques has been very limited. Future re-
search must to a greater extent be co-ordinated and aimed towards getting complete and quantitative pic-
tures of the dynamics of fish behaviour in the catching process. Dickson (1993a, b) integrated the avail-
able information on catch dynamics into a model in order to generate estimates of absolute abundance for
cod and haddock. More exercises of this type are needed. However, such work is, at present, limited by
the lack of ability of existing techniques to quantify observed fish behaviour under all conditions experi-
enced during a survey. For example, what is the validity of data gathered under optimal light condition
and on smooth bottom for modelling trawl efficiency under all conditions experienced during a survey?

Commercial Catch Data

The most direct measure of stock abundance in the past came from reliable records of landings. Due
to difficulties in controlling the ever changing technology and strategy employed by the commercial fleet,
catch and effort data are difficult to use for assessing the present state of a stock. Therefore, its impor-
tance has been reduced with the establishment of scientific surveys. However, modern communication
technology has improved the possibility of getting quick and detailed data from the fishing grounds. I
think that such a database could serve several applications. In Norway, it has been shown that the fishing
power of each trawler in the fleet can be estimated with relatively high reliability. Thus, the catch data can
be used to simulate surveys for example by month. Such simulations could be used for stock assessment
purposes, and might possibly contribute information on fish migration and distribution. Also, a correct
understanding of the underwater dynamics of heavily exploited fish stocks demands control and compre-
hension of the removal dynamics by man.

 In addition, a continuous time series of CPUE indices could give valuable information on changes in
catchability (see also Fig. 3). Scientific bottom trawl surveys assume constant catchability over time. If,
for example, CPUE analyses show substantial relative changes between surveys, the survey data could be
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treated accordingly (Fig. 3). Also, if there is a known relationship between survey trawl and commercial
trawl efficiency, this can be used to integrate the two types of data and thereby improve our understanding
of seasonal population dynamics.

Future of Stock Abundance Estimation by Observations From the Sea

It appears that no particular technological development is underway which alone will solve all the
problems of direct stock assessment from field observations. Nevertheless, the potential for improvement
in assessments based on scientific observations has never been greater. Technology is the driving force,
but it must be applied to cause a revolution. The advances in underwater observation technology has
greatly improved our knowledge and understanding of the underwater reality. The performance and qual-
ity of applied sampling gears and procedures can now be critically examined and evaluated in relation to
fish behaviour and distribution. While many of the observation methods are still imprecise with respect to
quantification, they clearly have potential for assessment purposes in the future. We are now just on the
threshold to a new 'world' of information. However, limited resources and expertise in fisheries research
prevent its use and development.

Present methodologies of fish stock abundance estimation are characterized by:

• rigid standardization,

• isolation from auxiliary variables, and

• "Water proof" barriers hindering integration of methods and data obtained from different techniques.

The inability to observe the underwater reality in the past made this blindfolded approach rational and
appeared to be the best way of reducing the effects of unknown variability. As far as I can see, current
knowledge and technology and the expected new developments in observation techniques, can hardly be
utilized efficiently under these three basic characteristics. Rigid standardization prevents implementation
of new technology and information as well as full utilization of auxiliary variables. Our present ability to
"see" has opened for us alternative approaches. I think that the "era of ignorance" (when decisions are
based on not knowing) is over and we have entered the "era of  knowledge" (decisions are based on
knowing). Estimates from present surveys normally represent a fraction of a stock. If abundance esti-
mates from surveys with different stock coverage are considered pieces in a puzzle, it should be possible
to merge different sources of information to complete our perception of the status of the entire stock. For
example if acoustic and bottom trawl survey data for gadoids (see Fig. 8) can be properly combined our
perception of stock composition and development can potentially be substantially improve over time.
What we need for the next century is a new approach that actively and systematically utilizes the new
observational methods and their generated knowledge.

Under the new approach, better stock assessments can be obtained through new or improved observa-
tion tools and methods and/or by increasing the basic biological understanding and knowledge. What then
will be the new survey characteristics?

In the past, a routine survey using state-of-the-art in observational methodologies was applied in a
systematic and standardized manner to collect measures of fish stock densities. Rigid standardization at
all levels, e.g. the bottom trawl, was to secure the integrity of long-term time series. There has been a firm
resistance against change, although studies have clearly shown that the basic assumptions do not hold.
Under the new approach, standardization will be aimed directly at biological characteristics instead of
rigid statements on equipment and procedures.

As an example; for acoustic surveys, instrument improvements have been continuously implemented
as they obviously improve the results. Proper calibration routines insure that such improvements will not
invalidate the historical series but will improve the precision.
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Standardization of methods means that:

1. the gear operate physically in the same way in all conditions.

2. the gear sample the a target species and sizes with equal efficiency under all situations.

Point 1 is most critical for active sampling gears such as trawl and acoustic gear. It will be necessary
to monitor performance, for example a sampling trawl with acoustic trawl instrumentation, to obtain a
constant swept area. Instrumentation for monitoring bottom contact is critical for the standardization of
sampling area and will probably soon be available. Bottom type can be monitored by acoustic instrumen-
tation (e.g. RoxAnn http://www.stenmar.com/roxann.html, see e.g. Magorrian et al., 1995) to take this
effect into account when analyzing the data. Changes in procedures and equipment are necessary when
measurements show that the gear is not performing according to the standard because of unpredictable
trawl geometry and performance. The use of trawl instrumentation to monitor trawl geometry and perfor-
mance has become standard for many surveys. However, very few surveys have changed procedures and
equipment to better meet the ideal standards.

For acoustic surveys, standard performance is secured through calibration (Foote et al., 1987). How-
ever, reduced performance can be caused by bad weather conditions and/or increasing depth. Technical
improvements, for example by using a transducer mounted on a protruded platform, has proved  to be a
simple and effective solution. Increasing beam volume with depth reduces the reflected energy from small
targets, i.e. the effective beam angle for varying fish sizes might vary (Ona, MS 1990). This can be
compensated for if the actual size composition of the targets is known. Also, the vessel system can be
calibrated for the effect of depth by using the output from a towed body or an AOV with the same sounder
and transducer operating close to the acoustic targets.

As shown earlier, all known sampling methods are selective. When selection has been detected, two
questions have to be considered. Firstly, can the selectivity be quantified and, secondly, can the sampling
gear be changed or replaced to avoid or minimize the problem? If improved sampling gear is found, cali-
bration (as in the acoustic survey) can be carried out to secure the integrity of the time series. Examples
of such calibrations exist (Godø and Sunnanå, 1992; Warren et al., MS 1997).

Calibration studies will never be perfect. The results might be corrupted by the high variation caused
by behaviour and environment factors. However, the effects of such variability have already invalidated
the old time series. Corrections, based on calibration will certainly not improve the past, but the new and
better sampling gear will improve future assessments based on the survey time series. Introduction of
modest improvements in equipment or procedures can also be introduced over time, particularly when the
goal is to reduce variability rather than increase efficiency.

Auxiliary variables will certainly in the future receive much more attention than they do today. Mod-
ern observation technology will facilitate the recordings of, for example temperature, light, bottom type,
current strength and direction, etc., continuously during a survey. When fundamental studies on the ef-
fects these variables have on, for example swimming capacity, escape reactions, distribution and migra-
tion are available, their effect on survey efficiency can be determined.

In the evaluation of a stock's status, survey indices of abundance are used to tune a VPA or similar
types of catch at age models (Hilborn and Walters, 1992). When several indices exist for the same stock,
they often give conflicting signals on  abundance trends and age composition because their observation
windows are different (Fig. 1). Thus, the survey results lose importance in the assessment. To improve the
utilization and effectiveness of such time series, we must develop methods and models that combine sur-
vey abundance data into one estimate of abundance before the data are used in assessments or as inputs
for ecosystem models. With the increasing length of survey time series, the relative performance of sur-
veys vs catch-data based assessments should be ascertained. Such analysis will certainly with time in-
crease the importance of surveys (see Pennington and Strømme, 1997).
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All the currently applied methods for obtaining biological information from the sea are biased and
imprecise to a varying extent. It is pure fantasy to believe that observational methods in the near future
are going to give precise and unbiased estimates and, hence, consistently reliable assessments of exploited
fish stocks. The limitation of the present survey methodology is perhaps not low efficiency. The problem
is rather that we try, with our standardized methods, to assess populations with non-standardized indi-
vidual and collective behaviourial patterns. The way to more reliable observations from the sea is meth-
ods that collect and utilize new information on these behaviour patterns. This approach demand develop-
ment of new technology and the application of existing technology from other fields (e.g. underwater oil
exploitation). When this new fund of knowledge is utilized and integrated into assessments, our future
management decisions will certainly become much more reliable than in the past.
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