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Abstract

The abundance and distribution of shrimp larvae were studied along four transects
off West Greenland in June—July 1996. Zooplankton samples and vertical profiles of tem-
perature, salinity, and fluorescence were obtained along the transects in order to relate
larval distribution to hydrographical and biological characteristics. Eight species of shrimp
larvae occurred in the sampleé®andalus montaguand Pandalus borealisvere the most
numerous constituting 61 and 29% of the larvae, respectively. Other species of shrimp
larvae were, in declining order of abundan@&abinea septemcarinatd.ebbeus
groenlandicus, Spirontocaris spinugualus galmardiPontophilugnorvegicu®), andArgis
dentata Pandalus shrimp larval density showed a significant positive association with
mean fluorescence (5-80 m), but no association with mean temperature, or densities of
copepod eggs and nauplii. However, most larvae were caught in water columns with tem-
peratures and salinities of 2@. and ~33 psu, respectively. AbundancePofmontagui
was negatively correlated with mean salinity and the proportidh ofontaguiwas higher
in stations closest to the coast. Catche®.ofmontaguiandP. borealislarvae were posi-
tively correlated ( = 0.729).

Analysis for lipid class composition iR montaguiandP. borealiszoea stage 3 and 4
revealed that phospholipids were the most abundant lipid class (~80% of total lipid weight)
followed by triacylglycerols (TAG) (10-15%), and wax esters (3—6%). TAG wet-weight
ratios ofP. montaguiandP. borealislarvae were used as indices of feeding condition, and
showed differences between larval species, zoeal stage, sampling station, and transect. In
the same zoeal stag®e montaguiarvae had higher TAG condition indices thRrborealis
larvae suggesting th& montaguimay have a greater growth and survival potential. The
TAG condition indices showed a significant negative association with fluorescence and
indices of copepod productivity for stageP4 montaguilarvae and no associations for
P. borealisstage 3 and 4 larvae. Future studies should investigate lipid condition of the
earliest stages oP. borealisand P. montaguilarvae and establish trophic relationships
(lipid nutrition) using food web tracer lipids. Such studies could be important to achieve
better recruitment predictions for both species.
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Introduction three-mile limit) at West Greenland, taking place
mainly in the Disko Bay, but also in a number of
During the last 20 years the most importantfjords and along the West Greenland coastline, (2) the
fishery resource in West Greenland waters has beeg¥fshore West Greenland shrimp fishery, outside the
the northern shrimpRandalus borealis Annual  three-mile limit. Today the fishing industry as well
Iandings of northern Shrimp from West Greenlandas the economy in Greenland is main|y dependent
waters increased from 7 000-8 000 tons in the earlyon this |arge northern Shrimp fishery, based on sta-
1970s to close to 87 000 tons in 1992, the highesj|e recruitment of new year-classes to the shrimp
level in the history of this fishery (Anon., 1997). stocks (Christensen and Vestergaard, 1993). How-
Historically the shrimp fishery at West Greenlandever, knowledge of recruitment variability and its
has taken place in two main areas (Carlssoncauses for the shrimp stocks at W&seenland and
1997): (1) the inshore shrimp fishery (inside thein other areas is spar¢evingel, 1997).
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Shrimp stock assessments require informatiorcoastal water masses meet water of oceanic origin.
on strength of recruiting year-classes as early a¥he distance between station positions was short
possible. Current forecasts of shrimp stock producwhere hydrographic fronts might be established,
tivity and potential fishing yields are weak partly enhancing productivity and larval aggregation
due to lack of knowledge of population processefMunk et al.,, 1995). On all stations zooplankton
from hatching until first capture in the fishery at were sampled using a MIK plankton sampler (2 m
about 4 years of age. Shrimp stocks may fluctuateliameter ringnet) equipped with a 16 m long black
between high and very low stock levels within only polyfile net of 1 mm mesh size. The basic design
a few years (e.g. Gulf of Alaska and Gulf of Maine of the gear is illustrated in Munk (MS 1993). For
stocks). Other examples show sudden occurrencstations 30 to 53 (the two southernmost transects)
of new productive shrimp fishing grounds (e.g. thea Bongo plankton sampler (diameter 0.61 m)
Flemish Cap fishery). Changes in hydrographicalequipped with 0.5 and 1 mm-mesh monofile nets
conditions (water temperature) have been describedas also used. Zooplankton samples were obtained
as a main factor for northern shrimp stock fluctua-using depth integrated oblique tows to about 80 m
tions (Shumwayet al, 1985; Tandeet al., 1994; (or to near the bottom) at a towing speed of about 3
Rasmussen and Tande, 1995). Year-class strenginots. The volume filtered was determined using
of fish and shellfish populations is mainly deter- General Oceanics flowmeters. On each station a
mined during the early life stages (Cushing, 1995)Sea-bird 25-01 sea logger CTD was used to obtain
Fluctuations in both abiotic (e.g. sea temperatureyertical profiles of temperature (SBE 3), salinity
water mass stability, hydrographic fronts) and bi-(SBE 4), and fluorescence (Chelsea). On every sec-
otic (e.g. food availability, predation) factors af- ond station the density (in number per)nof
fect growth and survival of fish and shellfish lar- copepod eggs and nauplii in the upper 60 m was
vae (e.g. Stein and Lloret, 1995; Muakal,, 1995; obtained from one vertical haul with a ringnet (22.5
Ouelletet al,, 1995; St. John and Lund, 1996). cm diameter and 50m mesh size) to provide in-

dices of copepod productivity. At 16 stations, fresh

According to Ouelletet al,, (1992, 1995) a bio- Pandalussp. larvae were randomly picked out of
chemical (lipid-based) condition index can reflectthe samples and frozen individually in 20 mm glass
survival potential ofP. borealislarvae. This may tubes at -2%5C for later determination of lipid con-
prove to be a powerful tool in assessing ecologicatents in the laboratory. Remaining organisms were
factor(s) involved in recruitment processes ofpreserved in 4% buffered formalin. Associations
P. borealispopulations. In high latitude areas, to- among temperature, salinity, fluorescence, indices
tal lipid content ofP. borealis ranging from 10 to of copepod productivity, and shrimp larval density
52 months old, exhibits marked seasonal oscilla{number per ) were investigated by Spearman
tions which are linked to the highly seasonal pelagidank correlations. The number of shrimp larvae
production cycle (Hopkinst al.,, 1993). In general caught by the two Bongo nets was compared using
little is known about the lipid composition and rela- Chi-square X?) tests p x q contingency tables)
tive energetics of field collected Pandalid shrimp(Campbell, 1975).
larvae (Clarke, 1979; Hopkinst al., 1993; Ouellet
etal, 1995). The objectives of this study were: (1)
to describe species, stage, size, and lipid compos|§rvae
tion of shrimp larvae along four sampling transects  In the laboratory all shrimp larvae were sorted
off the West Greenland coast, and (2) to relate larfrom the MIK and Bongo zooplankton samples. In
val distribution and lipid condition indices to samples containing more than 200 shrimp larvae,
hydrographical and biological characteristics ob-the sample was split so that a minimum of about

Species, stage size and abundance of the shrimp

served along the transects. 100 shrimp larvae were counted and identified to
species. Shrimp larvae from most of the MIK hauls
Materials and Methods and from a few selected Bongo hauls (e.g. station
) 48 with no MIK sample) were identified to species
Study area and sampling and zoeal stage. Abundance estimates were stand-

A total of 53 stations spaced at 4, 8 or 12 nauardized to number per square meter of sea surface
tical miles along four transects off West Greenlandto a sampling depth of 80 m or to the depth to bot-
were sampled from 26 June to 5 July 1996 with thdom (over the Banks with depths less than 80 m)
28 m Greenlandic research vesAdblf JenserfFig.  (Smith and Richardson, 1977). The fresh and for-
1). Transects were placed across shelf areas whemealin preserved shrimp larvae were measured for
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Fig. 1. Map showing transects and stations, direction of sampling, and the major

physiographic features.
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carapace length (posterior edge of orbit to mid-microscope with an optical micrometer. Multi-way
dorsal posterior margin of carapace) and total lengtland one-way analysis of variance (ANOVA) was
(tip of rostrum to end of telson) under a dissectingused to test for differences between stations and
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transects in mean size by species and zoeal stader quantification using flame ionization detection
(Anon., 1985; GLM procedure). with a model MK-5 IATROSCAN TLC/FID
analyzer (latron, Inc., Japan). The rods were ini-
Species and stage identifications of the shrimpially developed for 31 min in hexane — ethyl ether
larvae were based on the followin@andalus - formic acid (82:2.5:0.045, v/v/v, following
borealis Berkeley (1930), Haynes (1979, 1985), Ouelletet al. 1992) allowing separation of the
Squires (1993);Pandalus montagyiPike and Nonadecane and the esters. Each rod was then de-
Williamson (1964), Squires (1993);ebbeus veloped for 28 min in hexane — ethyl ether — for-
groenlandicus Haynes (1978), Squires (1993); mic acid (55:29.7:0.075, v/vl/v, following Ouellet
Sabinea septemcarinat&quires (1993); Other spe- et al., 1992) for separation of the sterol-ester

cies, Squires (1993). (WAX), triacylglycerol (TAG), free fatty acid
(FFA), and free sterol constituents (CHL). The po-
Biochemical analysis and larvae condition lar lipids (phospholipids (PHQO)) were quantified

using an addition of a third chromarods develop-
ment (25 min in chloroform:methanol:water

. . - (70:30:3.5, v/v/v). The gquantification of each lipid
tions were analyzed for lipid class composition (Ta- : ) :

) nstituent was based on calibration curves con-
ble 1). The stations were selected along transectsS

) . .~~~ structed from solutions of standard lipids. For each

and 4 (coast to offshore) to investigate variation in_,_ : o .
i ) . . shrimp larva the analysis for lipids was run twice
lipid content of the larvae in relation to changes in; S
. L in order to minimize errors. In general an average
the environment (temperature, salinity and abun-

dance of potential larval food). Larvae from Oneof the two calculations of lipid contents was used,

) . however, in a few cases only one of the calcula-
station on transect 2 were also included to test fof. I .
X g ions was within the normal range and reliable. The
possible south to north effects on the lipid contents

latter was mainly restricted to phospholipids and
due to error in the quantification procedure. Wet
weights (WW) and dry weights (DW, freeze-dried
for 24 hours using CD52 (HETO)) were measured
or each individual larva before and after lipid ex-
ractions to the nearest 0.01 and 0.005 mg, respec-

A total of 162 randomly selected shrimp larvae
(Pandalus borealisand P. montagu) from 12 sta-

Lipid extractions were performed on individual
larvae for 2x 24 hours in 2x 1 ml chloroform/
methanol (2:1 v/v) at -2« with a known quantity
(ca. 45ug) of Nonadecane added as an interna(
standard. After extraction the solvent was evapo-. . e N

o tively. Hence, the dry weights were "lipid free
rated under a stream of argon-gas and the lipid eX: eiaht
tract was resuspended in fDof solvent. 1.4ul of gnt.

the sample was then spotted on a SlIlI-Chromarod Lipid content (WAX, TAG, FFA, CHL and

PHO) relative to wet and dry weight of individual
TABLE 1. Number of shrimp larvae (N) analysed for li- |arvae was investigated for variation among spe-
pid content by stationPandalus borealis cjes, size, stage, sampling station and transect us-
stage 3 and 4 = Pb-3 and PbH#andalus 54 myjti- and one-way analysis of variance
montaguistage 3 and 4 = Pm-3 and Pm-4. AN OVA) (Anon., 1985; GLM procedure). Asso-
Station no. Pb-3  Pb-4 Pm-3 Pm-4 ciations among fluorescence, indices of copepod
productivity, larval density (number per?mand

N N N N sum TAG condition indices were investigated using
23 2 2 Spearman rank correlations (Anon., 1985; CORR
31 10 4 14 procedure).
36 1 1 4 5 11
37 3 3 9 15 Results
4313 é i 16 128 Hydrography, fluorescence and indices of
43 1 14 15 copepod productivity
jg g 12 4 ig Temperature along the four transects showed a
49 2 9 4 15 general increasing trend from north to south (Fig.
50 6 7 2 15 2). Cores of very cold water (below *@) were
53 2 4 1 8 15 found at depths between 20 and 100 m in the Disko

Bay area, on the western most stations close to the

Sum 44 65 5 48 162

edge of the West ice on transect 1, and on the
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Fig. 2. Vertical sections of temperaturgC along transects 1-4. Vertical lines indicate sampling stations and
depths.

western slope of the shelf on transect 2. On transect The fluorescence data indicate how primary

3 and 4 cores of cold water (from below 1 to°LH  productivity changed along and among the transects
were found at depths between 60 and 120 m. ThéFig. 4). On transect 1 and 3 there were peaks in
salinities varied from 32.0 to 34.7 psu with the low-the fluorescence at about 40 m (range 20-60 m),
est salinity levels in the surface layer of transects Whereas the peak was deeper at transect 2 (60 to
and 2 and the highest in the bottom water layer at20 m), and shallower at transect 4 (0-40 m). The
the western most stations of transect 3 and 4 (Fignean fluorescence in the depth range 5-80 m dif-
3). The temperature and salinity profiles along thefered significantly between stations and between

transects showed no or weak indices (transect 2) dfansects (Fig. 4). Transect 1 generally showed the
frontal or upwelling zones (Fig. 2 and 3). highest fluorescence although there were variations
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Fig. 3. Vertical sections of salinity (psu) along transects 1-4. Vertical lines indicate sampling stations and depths.

along the transect. Transects 2, 3 and 4 all showe8hrimp larval catches and abundances

the highest mean fluorescence on the station clos-

est to the coast (Fig. 4). Densities of copepod eggs MIK. The estimated total number of shrimp
+ nauplii ranged from about 50 to 7500 petwith larvae caught with the MIK plankton sampler was
no clear trend in abundance along or betwee® 737. The highest abundances of shrimp larvae
transects (Peter Munk, unpubl. data). In additionwere found on stations 38 and 39 with a total
the ratio egg concentration/nauplii concentration anumber per haul of 3454 and 4154, respectively.
each sampling station was about 1:1 with no cleakarge catches were also taken on stations 22, 23
trends within or between transects There was no siggnd 24 with total numbers per haul of 274, 753 and
nificant correlation between mean fluorescence (5248, respectively. The shrimp larvae catches with

80 m) and density of copepod eggs + nauplii=( the MIK sampler recalculated to number of shrimp
26,r = 0.28,p = 0.16). larvae per rin the upper 80 m of the water column
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showed the same relationships (Fig. 4). Shrimp lar2 234 and 3 317, respectively. The largest catches
val abundance was significantly correlated withwere taken on stations 37, 38 and 39 and the number
mean flourescence (5—80 m) on transect 4Q.76, of shrimp larvae caught was 232, 596, 980 (0.5 mm
p = 0.002), but not on transects 2 and 3. Shrimmet), and 576, 883, 1486 (1 mm net), respectively.
larval abundance showed no significant correlatiorOn transect 3 there was a significant difference
with indices of copepod productivity (number of (X29: 31.7,p <0.1) between the two Bongo nets,
eggs + nauplii per ), mean temperature or mean the 1.0 mm net catching more shrimp larvae. How-
salinity (5—80 m). ever, on transect 4 the 0.5 mm net caught signifi-
cantly ()(213: 28.6,p <0.1) more larvae than the

Bonga The total catch of shrimp larvae in the 1.0 mm net. Compared with the MIK sampler, the
24 Bongo hauls with 0.5 mm and 1 mm nets wasBongo sampler (both nets) had significantly higher
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Fig. 4. Mean fluorescence with standard error of the mean (top), and shrimp larvae catchébypénen

MIK plankton sampler (bottom) along transects 1-4.
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catches of shrimp larvae (on the order of 10 timesespectively, were morphologically identified to
as many). The difference between the samplers waBandalus montagyiand the larger larvae to
best illustrated on transect 4 (Fig. 5). However,P. borealisafter the method described by Ouellet
the catches of Bongo (mean of both nets) and MlKet al. (1990). There was a north-south trend in the
along transect 3 and 4 were significantly correlatedstage distributions of the Pandalid larvae (Fig. 6).
(r =0.88 and = 0.64, respectively), shows the sameThe majority of the larvae caught on transect 2 were
trends, and the largest catches by all three net typef stages 2 and 3 whereas the majority of the larvae
were taken on the stations closest to the coast. on transects 3 and 4 were in stage 4. Multi-way
) ) . ANOVA of larval size (carapace length) showed

Species, stages and sizes of the shrimp larvae  gjgnificant effects of transects, sampling station and

Nine species of shrimp larvae were caught withtype (species and stage) (Table 3). However, most
the MIK plankton sampler (Table 2). Pandalid of the variation was explained by transect and type.
larvae composed over 90% of the catoh=(1 278 Mean sizes increased significantly from transect 2
identified larvae). Most Pandalid larvae were into 4 and size varied significantly among species and
zoeal stages 3 and 4; however, zoeal stages fromstages (Table 3). One-way ANOVA by species and
to 5 were present. Length distributions by stagestage showed no significanp (¢-0.05) effect of
show two size groups in stages 3 and 4 (Fig. 6)transect for eitheP. borealisor P. montaguistage
For larvae in zoeal stage 3 there are peaks in th& larvae (Table 4). However, th montaguistage
size distribution at carapace length 1.6, 1.8, 2.4 and larvae were significantlyp(<0.001) larger on
2.5 mm. For larvae in zoeal stage 4 there are peaksansect 4 compared to transect 2 and 3. The
in the size distribution at carapace length 1.8, 2.0P. borealisstage 4 larvae were significantly
2.2 and 3.0 mm. Pandalid larvae less than 2.0 anp <0.05) larger on transect 3 compared to transect
2.7 mm carapace length in zoeal stages 3 and 4} (Table 4).
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5

4 — MIK

3_

2_

(@)}

N =
- Nes 0
o — C 101 =
E 0T 7T T T T T T T T 1T 1
5 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
g 50
=)
< 40+ [__] Bongo0.5mm M

30 {4 Bongo 1.0 mm

SN

ANONNONNNNNNNN

20 — |‘E
10
0| — A0 ml—b@ l—a
S A N RN B B R S —

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Station Number

Fig. 5. Comparison of shrimp larvae catches from 3 plankton samplers (MIK, Bongo 0.5 mm, Bongo
1.0 mm) along transect 4.
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TABLE 2. Species and stage composition of shrimp larvae caught in 53 hauls
with the MIK plankton sampler.

Number %
Species caught composition Zoeal stage
Argis dentata 1 1>0.1 2
Crangonidaesp. 1 >0.1 ?
Eualus galmardi 18 0.2 3
Lebbeus groenlandicus 302 3.1 2
Pandalus borealif”. montagui 8 866 91.1(32/68) 2-5
Pontophilus(norvegicu®) 3 >0.1 2-3
Sabinea septemcarinata 340 3.5 1-2
Spirontocaris spinus 206 2.1 2-4
There was a significanp(<0.001) relationship Both TAG to wet weight and TAG to dry weight

between carapace length and total length for botlhatios were investigated as indices of larval feed-
species, butZrwas relatively low (0.15-0.41) and ing condition. The two indices were strongly
the linear regression slopes were not significantlycorrelated (TAG/DW — index = 10.6 x TAG/WW —
different (o >0.05) among species or stages (Fig.index, = 0.93,n = 160). The TAG/WW index was
7). However,P. montaguistage 4 showed a broad used because it was easier to obtain.
size range and two apparent relationships a linear
and a non-linear between carapace and total length. Multi-way ANOVA of TAG to wet weight ra-
The wide size range in the Pm-4 larvae is also seetios showed significant effects of transect and spe-
in Figure 6. cies (stage), but no significant effect of sampling
station within transect (Table 5). One-way ANOVA
There was a significant correlation between theby transect, species and stage with station as class
log10 transformed catches &f montaguiand variable showed no significanp ¢0.05) effect of
P. borealislarvae ¢ = 0.729,p <0.01,n = 33). The station and no clear trend along each transect in the
majority of the larvae were caught in water columnsmean TAG to wet weight ratios (Fig. 10) or in the
with average temperatures and salinities ab8@t 2 mean wet weight ratios of other lipid components.
and 33 psu, respectively. The catche®.ahontagui Looking at the mean WAX, TAG and FFA to wet
andP. borealislarvae showed no correlation with weight ratios for each species, stage and transect
temperature. However, the catchesPofmontagui the mean lipid contents increase from south to north
larvae were negatively correlated with salinity=(  (transect 4 to 2) (Table 6). However, one-way
-0.447,p<0.01,n = 33), wherea®. borealislarvae  ANOVA revealed that only mean TAG to wet weight
showed no correlation to salinity. There was an intatios forP. borealisstage 4 and mean FFA to wet
creased proportion d. montaguiarvae in catches weight ratios (both species and stages) were sig-
towards the coast on transect 2 and 3 but not onificantly (p <0.05) different between transects

transect 4 (Fig. 8). (Fig. 10 and Table 6).

Lipid content and condition indices The neutral lipids (WAX + TAG + FFA + CHL)
Phospholipids (PHO) accounted for the majorto wet weight ratios were significantly increasing

fraction of the total lipid content iR. montaguiand  from transect 4 to 2, frorR. boralisto P. montagui

P. borealislarvae (Fig. 9). The triacylglycerols larvae, and on transect 3 and 4 from costal to off-
(TAG) were the most abundant neutral lipid fol- shore stations (Table 7). There was a significant
lowed by wax esters (WAX), free sterols (CHL), (p <0.05) decrease in the contents of neutral lipids
and free fatty acids (FFA) (Fig. 9). The FFA/TAG from stage 3 to 4 by species, and by stage
ratio was low (<0.15) in all larvae indicating high P. montaguilarvae were in significantly better li-
quality of the samples and low lipid degradationpid condition thanP. borealislarvae (Table 5-7,
before, during, and after the storage periodFig. 10). As larval size increased the relative TAG
(Christie, 1982). content showed a significant decreasing trend for
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TABLE 3. Results of a nested multi-way ANOVA of larval carapace length (CPL). Model:
CPL = Overall mean + TR + TYPE + ST(TR) + TYPE(TR) + Err, where TR =
transect 2—4, TYPE = Pandalid species and sRap@fealis(Pb) orP. montagui
(Pm) and stage 3 or 4], ST(TR) = sampling station nested within transect, and
TYPE(TR) = species and stage nested within transect.

Dependent Variable: CPL

Sum of Mean
Source d.f. Squares Square F Value Pr>F
Model 33 142 4.3 138 0.0001
Error 798 25 0.03
Corrected Total 831 168
R-Square C.Vv Root MSE CPL Mean
0.85 7.6 0.2 23
Mean
Source d.f. Type | SS Square F Value Pr>F
TR 2 39.2 19.7 627.5 0.0001
TYPE 3 99.0 33.0 1054.4 0.0001
ST(TR) 23 3.2 0.1 4.4 0.0001
TYPE(TR) 5 11 0.2 7.0 0.0001

TABLE 4. Mean carapace length and total length for two stagd® bbrealisandP. montaguilarvae by sampling

transect.
P. borealisStage 3 P. borealisStage 4 P. montaguiStage 3  P. montaguiStage 4
Transect No. Mean Std. err. No. Mean Std. err. No. Mean Std.err. No. Mean Std. err.
Carapace length (mm)
2 54 2.40 0.02 19 1.71 0.02 9 201 o0.10
3 68 2.36 0.02 43 3.03 0.02 85 1.66 0.02 235 2.09 0.01
4 74 2.41 0.02 136 2.97 0.01 2 1.82 0.14 107 2.26 0.02
Total length (mm)
2 6 9.94 0.35 13 7.50 0.26 2 8.10 1.09
3 46  10.23 0.09 31 12.82 0.15 59 7.28 0.08 173 8.96 0.06
4 28 10.17 0.09 45 12.35 0.11 70 10.13 0.16

larvae stage 3, but no significant relationship fornificant correlations only between the TAG condi-
P. borealisor P. montaguiin stage 4 (Fig. 11). The tion indices of Pm-4 and fluorescence % 7,r =
relative WAX content showed a similar decreasing-0.82, p = 0.03) and density of copepod eggs +
trend with larval size foP. borealislarvae stage 3 nauplii (n=4,r =-1.0,p = 0.0001).

and no relationship with size fd?. montaguior

P. borealisstage 4 (Fig. 11). The relative CHL con-
tent showed a weak increasing trend with size only
for P. borealisstage 4 (Fig. 11).

Discussion

Abundance and distribution

Rank correlation analyses between the TAG  The proportionate representationf®fmontagui
condition indices (Pm-4, Pb-3 and Pb-4) and fluo-(68%) andP. borealis(32%) larvae in our samples
rescence, density of copepod eggs+nauplii, andloes not correspond to current estimates of adult
shrimp larval abundance, respectively, showed sigstock size of the two Pandalid species at West
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Greenland. The stock size Bfborealisis far larger P. montaguiin catches from some fishing grounds

as reflected in catch statistics and fishery-independin recent years. Biomass indices from the annual
ent surveys. However, the Greenlandic fishery forGreenlandic shrimp assessment survey off West
P. borealishas observed an increasing amount ofGreenland indicate a rapid increase in population
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TABLE 5. Results of a nested multi-way ANOVA of TAG to wet weight ratios (TAGI).
Model: TAGI =Overallmean + TR + TYPE + ST(TR) + Err, where TR = transect
2-4, TYPE = Pandalid species and stdgebprealis(Pb) orP. montagui(Pm)
and stage 3 or 4], ST(TR) = sampling station nested within transect.

Dependent Variable: TAGI

Sum of Mean

Source d.f. Squares Square F Value Pr>F
Model 14 1349 96.4 5.9 0.0001
Error 148 2437 16.5
Corrected Total 162 3786

R-Square C.V. Root MSE TAGI Mean

0.36 41.0 4.1 9.9

Source d.f. Type | SS  Mean Square F Value Pr>F
TR 2 652.7 326.3 19.8 0.0001
TYPE 3 423.7 141.2 8.6 0.0001
ST(TR) 9 273.1 30.4 1.8 0.0650
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tion. (Arrows indicate points of only one observation).

size ofP. montagubetween 1988 and 1996 (Folmer, the catches of less valuable shrimp species, mainly
MS 1996). No previous records Bf montaguiar-  P. montagu{Anon., 1997; Folmer, MS 1996). Both
vae exist from West Greenland waters (Stephensemf these trends may be indications for a changed
1935; Horsted and Smidt, 1956; Horsttdal., MS  and colder sea environment. The latter is supported
1978; Smidt, 1979). The high proportion by a general cooling trend from the late-1960s on-
of P. montaguilarvae found in this study suggests wards in the sea temperature time-series from off
that the stock oP. montaguimay continue to in- West Greenland (Stein and Borovkov, 1997).
crease in the coming years.
Larval distribution

Changes in climate can have a considerable - _
impact on the productivity of fisheries resources P borealisin West Greenland spawn in offshore
(Glantz and Feingold, 1992). Research in climaticvaters starting in July and ending in late-August
variability indicates that a future global tempera-Or early-September (Horsted, 1978). The egg mass
ture increase might result in a colder climate and &S carried by females until spring (March—April)
changed sea environment at Greenland (and in othé‘ffhen femgles move to shallow water to release the
local areas of the north Atlantic) due to increasedirst pelagic larval stage (Horsted, 1978; Shumway
melt off from the Greenlandic icecap (Broecker,®t al, 1985). The planktonic larvae are thought to
1991). In recent years an increasing amount of thé8rift more or less passively during five zoeal stages
annual shrimp catches off West Greenland has beel@pproximately 4 months) and settle to the bottom
taken in the southern part of the northern shrimgduring the sixth (megalopa) stage (Berkeley, 1930;
distribution area, and there has been an increase iorstedet al, MS 1978; Shumwagt al., 1985).
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TABLE 6. Mean wet weight (frozen specimens) and lipid (WAX, TAG, FFA, CHL, and PHO) to wet weight indices
for two stages oP. borealisandP. montaguiby sampling transect.

P. borealisStage 3 P. borealisStage 4 P. montaguiStage 3  P. montaguiStage 4
Transect No. Mean Std. err. No. Mean Std. err. No. Mean Std. err. No. Mean Std. err.

Wet Weight (mg)

2 2 6.61 0.28

3 16 7.63 0.39 11 12.09 0.47 4 3.85 0.54 32 6.13 0.19

4 27 7.36 0.29 54 11.83 0.28 1 3.65 18 5.90 0.35
WAX/Wet Weight — Index

2 2 6.37 0.62

3 16 4.23 0.37 11 2.79 0.33 4 10.00 4.84 30 4.58 0.43

4 27 3.53 0.36 54 2.13 0.16 1 3.36 18 4.08 0.46
TAG/Wet Weight — Index

2 2 13.79 5.66

3 16  11.73 1.42 11 9.40 1.43 4 15.22 0.99 30 13.43 1.07

4 27 8.84 0.67 54 7.03 0.39 1 11.28 18 11.23 0.78
FFA/Wet Weight — Index

2 2 0.94 0.02

3 16 0.69 0.05 11 0.66 0.07 4 155 0.23 30 0.99 0.04

4 27 0.42 0.04 54 0.38 0.02 1 0.23 18 0.46 0.04
CHL/Wet Weight — Index

2 2 2.93 0.38

3 16 2.89 0.11 11 2.96 0.15 4 275 0.14 30 241 0.07

4 27 3.44 0.41 54 3.26 0.14 1 1.85 18 2.73 0.58

Neutral lipid (WAX + TAG + FFA + CHL)/Wet Weight — Index

2 2 24.04 6.64

3 16  19.53 1.63 11 15.81 1.41 4 2951 4.70 30 21.41 1.10

4 27 16.23 0.94 54 12.80 0.48 1 16.71 18 18.51 0.94

PHO/Wet Weight — Index

2 2 71.13 11.42

3 16  88.37 6.65 11 82.41 6.42 4 164.08 43.01 30 90.63 7.57

4 27 88.11 13.06 54 65.94 3.34 1 38.33 18 53.51 4.95

On transects 2 and R montaguilarvae domi- Bay (USA),P. montaguiadults were most common
nated at the stations closest to the coast, wheread depths between 20 and 90 m, whenedsorealis
P. borealisdominated offshore. The abundance ofmost often dominated in deeper water (Stevenson
P. montaguilarvae was negatively related to salin- and Pierce, 1985R. montaguis the only Pandalid
ity whereasP. borealisshowed no relation to salin- species which inhabits Arctic waters <iGand it
ity. Horstedet al. (MS 1978) indicated that is prevalent in the cold (-1 to°2), well-mixed
P. borealislarvae were more abundant at depths bewater of Arctic origin which becomes the "cold in-
low 50 m. This difference in larval distribution may termediate layer" in the Northwest Atlantic
be related to differences in the distribution of adults(Squires, 1966; Hudoert al., 1992).P. borealisis
In the annual Greenlandic shrimp assessment sucharacteristically found in the deep (150-500 m),
vey off West Greenland covering depths from 50 towarm (2-5C), stratified layer of Atlantic origin
600 m, P. montaguihave been caught mainly at located below the intermediate cold layer (Hudon
depths between 200 and 300 m aRdborealis et al, 1992).P. montaguidiffers fromP. borealis
mainly at depths between 300 and 400 m (Folmerby being more depth, temperature, and salinity tol-
MS 1996; Folmeret al., MS 1996). In Penobscot erant (Hudoret al., 1992).
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TABLE 7. Results of a nested multi-way ANOVA of neutral lipids to wet weight ratios
(NLIPI). Model: NLIPI = Overall mean + TR + TYPE + ST(TR) + Err, where
TR = transect 2-4, TYPE = Pandalid species and sfgeofealis(Pb) or
P. montagui(Pm) and stage 3 or 4], ST(TR) = sampling station nested within
transect.

Dependent Variable: NLIPI

Sum of Mean

Source d.f. Squares Square F Value Pr>F
Model 14 2 840 202.8 8.76 0.0001
Error 148 3426 23.2
Corrected Total 162 6 266

R-Square C.Vv. Root MSE NLIPI Mean

0.45 28.3 4.8 17.0

Source d.f. Type | SS  Mean Square F Value Pr>F
TR 2 1308.5 654.3 28.3 0.0001
TYPE 3 1054.4 351.5 15.2 0.0001
ST(TR) 9 476.8 53.0 2.3 0.0197

The general features of the current system anthg their planktonic larval life (Horstedt al., MS
water mass distribution around Greenland have beeh978). The current speed along West Greenland
described by Buch (MS 1994). In the present studyecreases from south to north and also with depth
there was a trend of olddtandaluslarvae from inthe northern area. Considering the possibility that
north to south. The water temperatures show awgurrent gyres occur in the shrimp area north-west
analogous increasing trend from north to southof Store Hellefiske Bank (Fig. 12) it seems likely
However, larval abundance was not related to temthat the stock in this area is recruited not only from
perature for either of the species. more southerly populations, but possibly to a much

greater extent by its own larval source (Horsétd

Larvae from transects 2, 3, and 4 are probablywl., MS 1978). These hypothesized larval drift
not from the same spawning/hatching populationroutes assume that larvae can be considered as pas-
Most of the larvae in stage 2 were identified assive particles in the water mass. In the present study,
P. borealisand a higher proportion in stage 4 werea weak trend was found of younger larvae from
P. montaguj suggesting tha®. borealislarvae were south (majority of stage 4) to north (majority of
hatched later. Eggs and larvae of the West Greerstage 2 and 3) which does not support the hypoth-
land shrimp populations appear to show a delay iresis of an entirely passive northward drift of larvae
hatching and development from south to north, rehatched in the south.
lated to the later warming and onset of primary and
secondary production from south to north. A time-|jpid composition and larval condition
series of zooplankton collections off West Green-
land (1956-1984) shows that shrimp larvae occur  The structural lipid fraction (i.e. phospholipids)
earlier (May—June) in south-west Greenland, thargccounted for most of the total lipid in both
further north in the Disko Bay area (Ju|y_August) P. borealis,and P. montaguilarvae. Ouelletet al
(Pedersen and Smidt, MS 1995; Pedersen, unpub{1995) similarly found phospholipids to be the most
data). Temperature has a strong effect on larvagbundant lipid class ifP. borealislarvae (zoeal
growth and development time of Pandalid larvaestage 1 and 2) from Gulf of St. Lawrence. How-
(Shumwayet al, 1985; Rasmussen, MS 1993; ever, triacylglycerols (TAG) accounted for the ma-

Tandeet al., 1994: Rasmussen and Tande, 1995)_j0r fraction of the total lipid inP. borealisfrom
Balsfjord (Hopkinset al., 1993). TAG is the pri-

P. borealislarvae hatched at south-west Green-mary storage form (as fat) of organic energy in
land may be transported several hundred naut. mileB. borealis and therefore the TAG to wet weight
by the net northward West Greenland current durratio ((TAG mg/WW mg)x1000)) can be used as
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an index for larval feeding condition (Ouelktal., phytoplankton and copepod production in the north-
1992; Hopkinset al., 1993). Ouelleet al. (1995) ern Gulf of St. Lawrence. In this study it was not
found a high content of the diacylglycerols (DAG) possible to demonstrate similar relationships be-
in shrimp larvae, which could reflect lipid degra- tween TAG condition indices and primary and sec-
dation during storage or metabolic activity. In theondary production. A significant negative associa-
present study the second largest lipid fraction wasion was found between TAG condition indices and
TAG, whereas no DAG was found. both fluorescence and copepod productivity for
P. montaguistage 4 larvae and no association for
The larvae used for lipid content analyses inP. borealisstage 3 and 4 larvae. Hence, the TAG
this study were randomly picked from catches attontent may not be linked to productivity for stage
selected stations and represent different sizeéd of 3 and 4 larvae. However, the spatial and temporal
borealislarvae in stages 3 and 4, aRdmontagui resolution of the samples in the present study may
larvae in stage 4. With larval size WAX and TAG have been too low to capture a link if it exists. Of
contents showed decreasing trends Poborealis immediate interest is wheth€r borealislarvae are
larvae stage 3, and no trend ferborealisandP. = more abundant at depths below 50 m as indicated
montaguistage 4. This could indicate that the lar-by Horstedet al. (MS 1978).
vae use more lipid than they accumulate in the pe-
riod before molting from stage 3 to 4. The CHL MIK and Bongo sampling

content showed a weak increasing trend with size . .
Our sampling was hindered by large amounts

only for P. borealisstage 4. CHL is used in build- . .
. : : of algae "slime" (algae threads and colonies)
ing cells and is not as accessible for energy use as

WAX and TAG.

70
Ouelletet al. (1992, 1995) found a relationship ‘ J l
between the proportion df. borealislarvae (zoeal
stages 1 and 2) with a TAG condition index below \
0.2 and the probability of survival during the next \
moult. In the present study the larvae were further

developed (zoeal stages 3 and 4) and none of them,
showed a TAG condition index below 0.2. However,%8 7 \

the TAG condition indices of thB. montaguilar-

vae were generally higher than for tReborealis Y o \ T
larvae, suggesting they may have a higher growth 2
and survival potential during their first winter (a ) g
catabolic period with drain in the energy budget) . ©
(Hopkinset al,, 1993). TheP. montaguiarvae seem 1 2 /

to be in a better feeding condition based on a gen- /\

In the Gulf of St. LawrenceR. borealislarvae
(zoeal stages 1 and 2) maintained their vertical pos4’
sition in the subsurface chlorophgland suspended // / PN \
particle concentration maxima during the day but /"/// r
moved towards the surface at night (Ouellet and
Lefaivre, 1994). Zoeal stage 2 larvae were larger / /4__

in weight and length, and showed a higher TAG2° /// \

erally higher content of neutral lipids. :%'/:// //
v

condition index at sites where developmental stages

of calanoid copepods were more abundant (Ouellet /
et al, 1995). Ouelletet al. (1995) conclude that / A - /&\

secondary production in the water column influ-

ences growth, condition, and survival potential of 64° 60° 55° 50°
shrimp larvae. They propose that larval survival andrig. 12. The areas of near bottom shrimp larvae (stages
recruitment to the fishable stocks are influenced by 4-6) occurrence in August—September off West
factors affecting stratification and mixing in the Greenland (shaded areas) and a scheme of the
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especially in the coastal areas of transects 3 and Zhough | did not find clear relationships, my re-
This was particularly a problem in the MIK sam- sults suggest that future studies should investigate
pler, which was very difficult to clean properly be- lipid condition of the earliest stages Bf borealis
tween the hauls due to size and net material. Thand P. montaguilarvae and establish trophic rela-
smaller and lighter Bongo nets were easier to hantionships (lipid nutrition) using food web tracer
dle, wash, and clean. The generally lower shrimgipids (St. John and Lund, 1996). Hence, sampling
larvae density estimated from the MIK samplershould take place earlier (end of May) and further
were probably due to greater net clogging and reto the south compared to transect positions in the
duced filtration. On transects 1 and 2 there was litpresent study. Vertical sampling and drift studies
tle algae "slime" in the water and, therefore, littleof larval patches are needed to study larval distri-
reduction in the MIK sampler filtration. bution, growth and survival in relation to variable
L e hydrographical and biological characteristics of the
Species identification larval environment. Such studies could be impor-
The larvae oP. montaguiare somewhat smaller tant to achieve better recruitment predictions for
but morphologically very similar tB. borealis and  both species.
the time of hatching and duration of the planktonic

phase is also similar (Ouellet al., 1990; Astthors- Acknowledgement
son and Gislason, 1991). In this study larvae iden- _
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