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Abstract

Different models relating codend selectivity to net variables such as mesh size, extension
length and codend diameter often fit experimental data almost equally well. The choice of
an appropriate model must then be determined by other considerations. This is particularly
important when, for management reasons, it is necessary to extrapolate outside the range
of the experimental data. Two families of codend selectivity models were considered. One
family was developed using empirical fits to data. The other was developed using arguments
about the physical and biological mechanisms which underlie selectivity; this family provides
plausible prior selectivity models which might be useful for extrapolation. The fit to
experimental data and the consequences of extrapolating each model was investigated.
Although an 'empirical' model often provided the best fit, this sometimes gave unrealistic
predictions outside the range of experimental data and such a model should not be used
for extrapolation. When a plausible prior model gives the best fit to the data, its use is
generally recommended. Otherwise, procedures are suggested for balancing the conceptual
advantages of a plausible prior model with the empirical evidence for an alternative model.
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Introduction

Recent investigations of codend selection have
stressed the importance of using appropriate
statistical methods in fitting models to data (Fryer,
1991; Millar, 1992, 1993, 1994; Millar and Walsh,
1992) and of considering variables other than mesh
size, such as codend diameter and the length of
the extension piece (Reeves et al., 1992; Galbraith
et al., 1994). However, relatively little attention has
been given to the most appropriate functional form
to be fitted. A logistic curve is now commonly used
to relate retention probability to length (Pope et al.,
1975), although recently, asymmetric (Millar, MS
1991) and nonparametric (Millar, 1993) selectivity
curves have also been used. Reeves et al. (1992)
showed that the parameters of the logistic curve can
depend on variables such as mesh size and codend
diameter, and that these relat ionships can be
expressed in  severa l  ways .  These  var ious
alternatives may fit the data almost equally well and
a choice between them may have to be guided by
other consideration; for example, see the discussion
by Reeves et al. (1992) on the choice between their
equations (5) and (7).

The differences between alternative models
may only become apparent when they are extra-
polated beyond the range of  the data f i t ted.
Forma l l y,  o f  course ,  such ex t rapo la t ion  i s
undesirable.  Regret tably,  however,  i t  is  of ten
unavo idab le  in  p rac t ice ;  fo r  example ,  when
considering an increase in mesh size beyond that
used in  se lec t i v i t y  t r ia ls  to  da te .  In  such
circumstances, the known dangers of extrapolation
may be reduced by using only models that are
'robust' to extrapolation; that is, models that give
'sensible' predictions, consistent with the available
understanding of the underlying physical and
biological mechanisms of codend selection. Indeed,
models robust to extrapolation may be preferred to
other candidate models, even when their f i t to
exper imental  data is  marginal ly  worse,  i f  the
purpose is prediction outside the range of the data.
A well known situation in which this occurs is the
f i t t ing of  polynomial  regression models;  such
models are often useful for describing trends in
data, but should rarely be used for extrapolation.
The selection of appropriate families of models
rarely receives the attention it deserves; Gilchrist
(1984) gives a useful discussion of the issues
involved.
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This paper considers two families of codend
selection models, which we loosely call 'empirical'
and 'structural'. The empirical models have been
used with experimental data to show the effects of
mesh size, codend diameter and extension length
on selectivity (Reeves et al., 1992; Galbraith et al.,
1994). The 'structural' models are developed here
using arguments about the underlying physical and
biological mechanisms of codend selection and are
more directly based on the traditional selectivity
concepts of selection factors and ranges. These
models are plausible and internally consistent a
priori and therefore should provide reasonable,
feasible predictions. We first describe the empirical
and structural models, and investigate the fit of each
model to four selectivity data sets. We then consider
the interpretation and application of each model,
with particular emphasis on extrapolation. Finally,
we discuss the management implications of model
selection.

Empirical Models

Reeves et al. (1992) and Galbraith et al. (1994)
describe selectivity trials for haddock, whiting and
cod using:

– two seine nets and a single boat trawl with,
approximately,  mesh sizes of 80–100 mm,
extension lengths of  0–13 m and codend
diameters of 2–4 m,

– a pair trawl with mesh sizes of 80–110 mm,
codend diameters of 2–4 m, and a constant
extension length of about 11 m.

Using these data, they investigated models of
the form:

    Model E1 log e
p

1 – p
= α1 + α2m + α3e + α4c +

α5 + α6m + α7e +α8c l

where    p, l, m, e, c are retent ion probabil i ty,  f ish
length, mesh size, extension length and codend
diameter respectively and   α1, α2, ... α8 are unknown
parameters that are species and net dependent.
Further, they found two simplifications of this model:

    Model E2 log e
p

1 – p
= α1 + α2m + α3e + α4c + α5 l

    Model E3 log e
p

1 – p
= α1 + α3e + α4c + α5 + α6m l

which both adequately described the selectivity
data for all species/net combinations over the range
of experimental mesh sizes, extension lengths and
codend diameters. Full details are given in the
references above.

For comparative purposes, we also consider
here a very simple model in which selectivity does

not depend on any explanatory variables (other than
length): namely,

    Model E0 log e
p

1 – p
= α1 + α5 l

Structural Models

The traditional parameterization of a logistic
curve for a particular mesh size m (and any other
relevant variables) has been in terms of the 50%
retention length l50 and the selection range SR = l75
– l25. It has also been traditional to express the 50%
retention length in scaled form, as the selection
factor SF = l50 /m. It has not been so common to
express the selection range in the equivalent scaled
form, as the range factor RF = SR/m, but we shall
find this useful also. Such non-dimensional scaling
is a common procedure in physics and engineering
and (a l though somet imes mere ly  a  mat ter  o f
convenience) often reflects fundamental properties
of the system under discussion. This leads to the
power fu l  techn ique con fus ing ly  known as
dimensional analysis, much used in fluid dynamics
(see, for example, Fender, 1957).

The problem of mesh selection is essentially
geometrical. Selectivity can be thought of as the
passage of similarly shaped objects of various sizes
(f ish) through square or diamond shaped (but
somewhat deformable) holes. Given a particular net
and size composition of fish, what would happen if
the size of mesh and the sizes of all the fish were
doubled (or halved)?  If we were dealing with ball
bearings and rigid round holes, the answer would
be obvious; the same fraction of balls would pass
through the holes. With fish and fishing nets, the
answer is not so clear.  Both f ish and net are
somewhat deformable and fish can force their way
through in a tight squeeze. Nevertheless, this only
affects fish whose escape is borderline. For those
that are substantially too large or too small, the
outcome will be the same in the rescaled situation.
Thus, on very general grounds, the probability of
escape should be similar.This is known as the
principle of geometr ic simi lar i ty in the gi l lnet
literature (Baranov, 1914, 1948).

These geometrical arguments suggest that a
selectivity model with l50 directly proportional to
mesh size (or equivalently, constant SF) should be
a good first approximation. This gives

   l 50 = f (x) m,

where f(x) is a (dimensionless) function of net
variables other than mesh size, such as extension
length and codend diameter.

Similar arguments suggest the SR should also
be directly proportional to mesh size, or equivalently
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RF be  cons tan t .  Such a rguments  a re  less
compelling for SR than for l50. The relationship
between l50 and mesh size is determined mainly by
changes in fish girth with fish length; however, the
re la t ionsh ip  be tween SR and mesh s ize  i s
determined mainly by how the deformity of the net
changes with mesh size and how the deformity of
fish and variation in girth change with fish length.
Nevertheless, it is quite reasonable that, as a first
approximation,

   SR = g(x) m

where (x) is another function of net variables other
than mesh size.

Incorporating these expressions for l50 and SR
into the logistic selectivity curve:

   log e
p

1 – p
=

2log e(3)
SR

l – l 50

gives the 'structural' model:

    log e
p

1 – p
=

2log e(3)
g (x) m

l – f (x) m

Th is  can  be  s impl i f i ed  by  wr i t ing
    g' (x) = 2log e (3) / g (x) and f '(x) = –f '(x) g' (x) to give:

    log e
p

1 – p
= f ' (x) + g' (x) lm – 1

This family of structural models, based on
geometrical arguments, provides plausible prior
models. However, their use must be tempered by
several considerations. For example, although mesh
size may be doubled, a 50-cm haddock is not
exactly double a 25-cm haddock, either in girth, or
in wriggl ing power. Secondly, the geometrical
arguments assume that other variables affecting
selectivity remain unchanged. However, in practice,
changes in mesh size require changes in other net
variables, so that the net continues to function
properly. For example, a constant codend diameter
is maintained by changing the number of meshes
round the codend. The latter point is discussed
further later on.

A fairly general structural model, incorporating
extension length and codend diameters, is:

    Model S1 log e
p

1 – p
= α1 + α2e + α3c +

α4 + α5e + α6c lm –1

Similar to models E2, E3 and E0, we also
consider:

    Model S2 log e
p

1 – p
= α1 + α2e + α3c + α4lm –1

    Model S3 log e
p

1 – p
= α1 + α4 + α5e + α6c lm –1

    Model S0 log e
p

1 – p
= α1 + α4 lm –1

which are nested within model S1.

These models are interpreted as follows:

S1: Both the selection factor SF and the range
factor RF depend on net variables other than
mesh s ize  ( i .e .  codend d iameter  and
extension length), but in different ways.

S2: RF is constant but SF depends on the other
net variables.

S3: Both SF and RF depend on the other net
variables, but in the same way.

S0: Both SF and RF are constant.

Note that a model in which SF is constant and
RF depends on the other net variables can be
formulated as:

    log e
p

1 – p
= α1 + α2e + α3c 1 + α4lm – 1

but this model is not considered further here.

Model Fits to Data

The empirical and structural models were fitted
to the selectivity data of Reeves et al. (1992) and
Galbraith et al. (1994) using the fixed and random
effects model of Fryer (1991). The fitting procedure
was in two parts (see Fryer, 1991, for details). A
logistic curve was first fitted to the data for each
haul. Maximum likelihood was then used to combine
these logist ic estimates over hauls and hence
estimate the parameters  α.  Hauls with very few fish
had to be discarded. Generally, plenty of haddock
were caught ,  and few hauls were discarded.
However, more whiting hauls and many cod hauls
were discarded. (So many cod hauls from the single
boat trawl were discarded that no model could be
fitted to these data). Thus, the results for haddock
should be most 'reliable' and haddock has always
been used below for illustrative purposes.

All the models revealed the same qualitative
effect of mesh size, extension length and codend
diameter on selectivity and gave broadly similar
fitted values within the range of experimental data.
However, a formal comparison of model fits is not
straightforward because the number of parameters
varies between models and because the empirical
and structural models are not nested. One useful
model selection criterion is Akaike's Information
Criterion (AIC) (Akaike, 1973, 1974), defined to be:
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AIC = -2 (maximized log-likelihood) + 2 (number
of estimated parameters).

A IC  favours  mode ls  w i th  good pred ic t i ve
performance, by penalizing models with many
parameters that overfit the data. In linear regression
models, AIC is an approximately unbiased estimator
of the prediction error. For more general models,
as here, AIC is asymptotically equivalent to cross-
validation (Stone, 1977), another method of model
selection, and considerably easier to compute. As
a rule of thumb, models within two units of the lowest
AIC are considered plausible 'best' models; of
these, the model with the fewest parameters is
usually selected (Jones, 1993). Table 1 give the AIC
for each model/species/net, scaled so that the
minimum AIC is zero.

No model is consistently the best. However, one
of the empirical models usually has the lowest AIC.

Of these, model E3 appears a good general choice,
s ince  i t  has  few parameters  and per fo rms
reasonably for most data sets. In most cases, one
of the structural models also performs reasonably,
except for the seine 1 data.

Other model selection criteria, based on cross-
validation statistics, were also considered. These
genera l ly  suppor ted the  conc lus ions  above.
Interestingly, a cross-validation statistic based on
leaving out each experimental combination (of m,
e, c) one at a time and predicting the corresponding
value of  l 50 v i r tual ly  mirrored AIC in Table 1.
However,  the comparable  s ta t is t ic  based on
predicting SR suggested there was little to choose
between any of the models. This suggests that
changes in the net variables have a much greater
effect of l50 than on SR (as noted by Reeves et al.,
1992) and that model choice is predominantly
determined by the ability to predict l50.

TABLE 1. Akaike's information criterion for each model/species/net scaled
so that the minimum AIC is zero.

Species Model Seine 1 Seine 2 Single trawl Pair trawl

Haddock E0 275.1 97.4 129.6 48.2
S0 202.6 61.6 93.6 21.3

E1 2.3 0.0 0.0 1.8
E2 11.2 20.4 17.9 1.7
E3 0.0 1.1 10.2 0.0

S1 69.0 5.1 11.6 5.3
S2 65.8 6.7 22.2 3.5
S3 90.0 6.9 54.9 5.7

Whiting E0 138.2 91.7 96.7 31.9
S0 102.8 53.7 73.2 18.6

E1 0.0 0.0 0.1 2.3
E2 24.0 38.4 0.0 0.0
E3 14.1 19.2 9.8 2.9

S1 15.5 3.3 17.9 3.3
S2 32.2 23.5 17.0 3.1
S3 18.0 13.3 33.4 1.3

Cod E0 218.2 109.1 23.5
S0 154.9 58.6 13.6

E1 0.0 4.2 1.9
E2 10.1 21.0 6.1
E3 2.3 0.0 3.8

S1 66.9 11.2 0.0
S2 66.7 9.0 2.6
S3 85.6 28.8 7.7
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Interpretation and Application of Model Fits

Expressions for l50 and SR for each model are
given in Table 2. By construction, l50 and SR are
directly proportional to mesh size for the structural
models. Various behaviours are possible with model
E1, depending on the values of the parameters  α.
However, for E2, l50 varies linearly with (but is not
generally directly proportional to) mesh size and SR
is independent of mesh size. With E3, both l50 and
SR vary as the inverse of a linear function of mesh
size.

Figure 1 shows how l50 predictions for haddock
depend on the choice of selectivity model as mesh
size increases from 80–150 mm. Throughout, an
extension length of 9 m (11 m for the pair trawl) and
a codend diameter of 3 m have been assumed.
These are roughly the average values used in the
selectivity trials and explain why the l50 predictions
from the structural models are so similar; real
differences between these models only appear at
different values of extension length and codend
diameter. There is reasonable agreement between
the two famil ies of models within the range of
experimental mesh sizes (80–100 mm for seine 1,
seine 2 and the single trawl and 80–110 mm for the

pair trawl). However, extrapolating outside these
mesh sizes causes the l50 predictions to diverge. In
particular, the l50 predictions from models E1 and
E3 rapidly increase due to the inverse l inear
relationship between l50 and mesh size. For the data
sets considered here, the l50 predictions from model
E2 increase faster with mesh size than those from
the structural models; however, this need not always
be the case.

Figure 2 shows how SR predictions for haddock
depend on the choice of selectivity model as mesh
size increases from 80–150 mm. Again, there is
reasonab le  agreement  w i th in  the  range o f
experimental mesh sizes, but the SR predictions
diverge outside this range.  Again, SR predictions
from models E1 and E3 increase rapidly with mesh
size.

Management Implications

The choice of an appropriate selectivity model
depends on the purpose for which it is to be used.
For example, all the models considered here show
the effect of mesh size, extension length and
codend diameter on the selectivity of the four
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Fig. 1. Haddock l50 for mesh sizes between 80 and 150 mm predicted from models
E1–3 and S1–3. Note that the predicted l50 for models S1–3 are almost
coincident.

experimental nets. Further, to predict selectivity
wi th in the range of  exper imental  mesh sizes,
extension lengths and codend diameters, a sensible
strategy would be to use the 'best '  model as
determined, for example, by AIC. Indeed, for the
selectivity trials considered here, all the models
would give 'similar' predictions.

Other considerations become important when
extrapolating outside the range of experimental
data. For example, model E3 often appears a
reasonable choice, based on its fit to experimental
data. However, extrapolations using this model are
highly inconsistent with our intuitive ideas on how a
net should behave (see Fig. 1 and 2), so model E3
should not be used for extrapolation. The same
applies to the more general model E1 unless the
value of the parameter   α6  is negligible.

As a fur ther example, consider the case of
haddock/seine 1. Here, the empirical models fit
much better than the structural models. However,
some judic ious model  construct ion reveals a
structural model with a comparable fit; namely:

    log e
p

1 – p
= α1 + α2e + α3n + α4lm –1

when n is the number of meshes round the codend,
(highly correlated with the codend diameter). This
model suggests that doubling the mesh size, while
keeping the extension length and the number of
meshes round the codend fixed, would double l50.
However, suppose that n = 120 and that mesh size
is doubled from 80 to 160 mm. Although n = 120
and m = 80 represents a practical net configuration,
n = 120 and m = 160 would create considerable
'ba l loon ing '  o f  the  codend,  lead ing to  qu i te
unpredictable selection behaviour. Extrapolations
from this model should be viewed with caution.

Despite such cautionary tales, the need to
extrapolate remains. In general ,  the use of  a
structural model would be recommended when it is
the 'best' model according to some empirical model
selection criterion. However, an appropriate choice
is less clear when, for example, model E2 fi ts
selectivity data better than any of the structural
models .  I t  i s  then necessary  to  ba lance the
advantages of a geometrically consistent prior
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Fig. 2. Haddock SRs for mesh sizes between 80 and 150 mm predicted from
models E1–3 and S1–3. Note that the predicted SRs for models S1–3 are
almost coincident.

model with the empirical evidence. One solution
would be to present results from both sets of
models. If these are close, the extrapolations are
insensitive to the choice of model and one can
proceed with confidence using either prediction. If
the extrapolat ions di ffer great ly,  the potent ial
dangers arising from uncertainty over the choice of
model are made clear. An informed decision can
then be made,  based on  whether  one is  an
empiricist or a structuralist and on any other relevant
considerations.

For example,  suppose we wish to reduce
haddock discards from pair trawls by increasing l50
to 40 cm, say, by an appropriate increase in mesh
size. From Table 1, models E2 and E3 are competing
'best' models, being within two units of the minimum
AIC.  Mode l  E2  i s  p re fe r red to  mode l  E3  fo r
extrapolation, and suggests a target mesh size of
118 mm, with an approximate 95% confidence
interval (conditional on model E2 being correct) of
114–126 mm. Model S2 also has a pretty good fit
and gives a target mesh size of 130 mm with a 95%
conf idence in terval  o f  125–136 mm. The two

predictions do not completely conflict, given that
the  con f idence in te rva ls  over lap .  A  genera l
estimation method would be to take a weighted
average of the two predictions, with weights based
on a) the strength of our prior preference for a
structural model and b) the difference between the
two empirical fits.  However, the question of an
appropriate weighting function immediately arises.
A more satisfactory solution would be to look at the
short- and long-term implications of each model
choice, assuming each is the correct model, and
under mutual  model  mis-speci f icat ion.  In the
example above, what would be the biological, social
and economic consequences of an increase in mesh
size to 130 mm if l50 increases to 40 cm as predicted
by model S2 or to 46 cm as predicted by model
E2?  Similarly, what would be the effect of an
increase in  mesh s ize to  118 mm?  Such an
approach falls naturally into the philosophy of risk
analysis,  increasingly being used in f isher ies
management.

Ideally, of course, extrapolation should be used
to  des ign  cos t -e f fec t i ve  se lec t i v i t y  t r ia ls  to
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investigate proposed changes in net variables.
Uncer ta in t ies  over  mode l  cho ice  can  be
accommodated in the design of  the tr ia l .  For
example, a trial could investigate the range of mesh
sizes that models E2 and S2 suggest might give the
target l50. The only remaining uncertainty is then the
familiar one of relating experimental studies to
commercial operations.

When ext rapolat ion is  necessary,  a  good
principle is to choose models that give sensible
predict ions outside the range of experimental
variables. On this principle, structural models will
of ten be preferred, s ince extrapolat ion using
empirical models can, except in special cases, lead
to  unrea l i s t ic  p red ic t ions  o f  l 50  and SR fo r
reasonable values of mesh size.
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