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Abstract

An analysis of a trouser trawl experiment with multiple subsampled hauls is presented.
The standard method of analysis involves scaling catches by subsampling fractions and
combining the catches for each haul to obtain an estimate of the size selectivity of the test
gear. This procedure results in invalid statistical inferences and is not appropriate if the
split of fish is not the same in all hauls or if subsampling fractions have measurement error.
Modifications of the selectivity model are proposed that significantly improve the analysis
of this type of data (e.g. to estimate selectivity without subsampling fractions). Likelihood
ratio tests are developed to test which modified selectivity model best fits the data. Confi-
dence bounds are developed as diagnostic tools. The procedures are illustrated with a
data analysis.
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Introduction

A size selectivity study involves estimating the
catch efficiency of a fishing gear. The trouser trawl
is one method that has been developed for this
purpose. This trawl contains both experimental and
control mesh codends that are separated so that
the selectivity of the experimental mesh can be de-
termined through a comparison of catches from this
mesh and the control mesh. A description of the
trouser trawl is given in Cooper and Hickey (1989)
and Walsh et al. (1992). The trouser trawl was de-
veloped as an alternative procedure to the covered
codend and alternate haul methods and came into
widespread use in Canada in the mid-1980s when
researchers began observing the covered codend
with underwater cameras and discovered severe
masking of the codend mesh by the cover, and also
when the alternate haul method was found to re-
quire too many sets for valid comparisons. However,
the trouser trawl has one major disadvantage in that
the codends may enounter different amounts of fish.

Selectivity curves have, in the past, been esti-
mated from trouser trawl data by eye or by scaling
the data for a logistic regression analysis (Pope et
al., 1975). These procedures were found to be un-
satisfactory for several reasons (e.g. unevenness
in warps or bridle lengths cause unequal fishing for

the two sections of the trouser trawl, species like
plaice often enter a trawl more on one side than the
other, etc.) and resulted in Millar (1992) (also Millar
and Walsh, 1992) proposing a more rigorous statis-
tical methodology that essentially works by condi-
tioning on the total catch in both the experimental
(large mesh) and control (small mesh) codends for
each size or length-class of fish measured. The
method has been shown by Cadigan and Millar
(1992) to be superior to other methods. Millar (MS
1991) has shown that the method is applicable for
a variety of size selectivity studies and has called
it SELECT (Share Each Length class's Catch Total).

Subsampling of catches is usually carried out
in experiments of this type whenever catches are
large. The sampling procedure varies according to
the conditions encountered on the vessel, such as
weather, volume of fish, space for sampling, and
manpower available. If the catches are not too large,
one procedure is to place the fish in boxes, then
randomly select the appropriate number to sample.
The average weight per box is combined with the
total number of boxes to give the total weight of the
catch. If the catches are very large, then due to time
constraints only a fixed portion of the total catch
(independent of length) is sampled. In this case the
total weight is estimated from the total gutted weight
or visually when no other alternative is available.
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The purpose of this paper is to extend the Millar
and Walsh (1992) procedures to the analysis of
subsampled selectivity data. SELECT is shown to
be appropriate for the analysis of one subsampled
hau l  bu t  no t  fo r  a  combina t ion  o f  mu l t ip le
subsampled hauls unless the sampling fractions are
the same. The current practice is to scale the data
from each haul according to subsampling effort
(e.g. Suuronen and Mil lar, 1992), however, the
standard errors of parameter estimates and the es-
timated selectivity curves may be incorrect in do-
ing so. A more rigorous procedure is proposed that
is free of these deficiencies. Methods and modifi-
cations for subsampling are developed here in
terms of the trouser trawl and a fish species, how-
ever, applications to other selectivity experiments
are straightforward.

Methods

SELECT for a subsampled sampled haul

The statistical modelling essentially follows
Millar and Walsh (1992) and Millar (1992). We as-
sume the split is unknown, however, Millar and
Walsh (1992) considered the case where p is as-
sumed to be 0.5. The split refers to the proportion
(p) of fish that enter the experimental codend rela-
t ive to the total number of f ish entering either
codend.

Let Nl1 and Nl2 be random variables represent-
ing the number of fish of length class l sampled in
the experimental and control codends respectively.
Let  λ I be the number of length l fish entering the
trawl and let  f 1 and  f 2 denote the subsampling frac-
tions of the experimental and control codends re-
spect ive ly.  The  subsampl ing  f rac t ion  i s  the
subsampled weight divided by the total weight in
the codend and is assumed to be equivalent to the
fraction of numbers at length sampled. If the reten-
tion probability of length l fish in the experimental
codend is denoted as r I and all fish that enter the
control codend are caught then the expectations of

 N I1 and  N I2 are:

  E(N l1) = f 1 pr lλ l,
E(N l2) = f 2 (1 – p)λ l.

If Nl1 and Nl2 are considered as Poisson ran-
dom variables then, conditional on the observation
of Nl1 + Nl2 (denoted as nl1 + nl2), Nl1 is distributed
as a Binomial random variable. The expected
number of length l fish sampled in the experimental
codend if   n l+ φll  where,

   φl =
f 1pr l

f 2(1 – p) + f 1pr 1
(1)

and nl+ = nl1 + nl2.

The loglikelihood (log of the likelihood of the
data given the parameters and the binomial model)
is specified in terms of the canonical parameter   (θ l)
of Nl1 (see McCullagh and Nelder, 1989, p. 30). Let
Λ equal the loglikelihood, then; apart form a constant;

   Λ = n l1θ l – n l + log (1 + exp (θ l))Σ
l = 1o

L
, (2)

where lo and L are the minimum and maximum
length classes observed and  θ l  = log(f1/f2)+log(p/
(1 – p))+log(rl).

The function rl, which is the selection of the experi-
mental gear, is commonly taken as the logistic func-
tion:

  r l =
exp (a + bl)

1 + exp (a + bl)

Let  β ′ = [a,b,p] be the vector of parameters to
estimate. Maximum likelihood estimates of β are ob-
tained by finding the roots of   ∂Λ/∂β  using iterative
reweighted least squares (Millar, 1992). Let W be
the m × m diagonal matrix where m = L–lo+1 and the
ith diagonal element of W is    n l+φl(1–φl). Let X be the
m × 3 matrix whose lth row is given by    ∂θ l/∂β′. The
large sample covariance matrix of the maximum
l ike l ihood es t imate  o f  β  i s  the  inverse  o f

  E(– ∂2Λ/∂β∂β′) = X ′WX.  A statistical test based on the
likelihood ratio may be used to test if p = 1/2. If   Λ o
is the loglikelihood obtained by fitting the model

   θ l = log (f 1 / f 2) + log (r l),  (e .g .  p o =  1 /2  then
  2(Λ–Λ o) is distr ibuted asymptot ical ly as a chi-

square random variable with 1 degree of freedom
where the unknown parameters in Λ and   Λ o are
replaced by their maximum likelihood estimates. If

  2(Λ–Λ o)  exceeds 4 then that is evidence that p ≠
1/2.

If we write:

 p* =
f 1p

f 2 (1 – p) + f 1p
,

then (1) may be rewritten as:

   θ l =
p*r l

(1 – p*) + p*r l
,

which is identical to the model in Millar and Walsh
(1992); hence, standard software such as in Millar
and Cadigan (1991) can be used to estimate se-
lectivity from subsampled hauls without information
on the subsampling fractions. However, p must be
interpreted in terms of p* and not the split of fish.
Th is  procedure  i s  on ly  appropr ia te  i f  the
subsampling fractions are the same for all fish in
each codend. If fish are subsampled differentially
(say  by  length)  then  a t  leas t  the  re la t i ve
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subsampling fractions will be needed for use with
a modification of (1).

Another procedure that is commonly used for
subsampled data is to either scale the numbers
sampled in:

i) the experimental codend down so that ƒk1
= ƒk2 (Suuronen and Millar, 1992), or

ii) the control codend up so that ƒk1 = ƒk2.

Both methods will produce the same parameter
estimates, however, the standard errors of param-
eter estimates will either be too large using (i) or
too small using (ii). Another difficulty with scaling
is that if length l fish are caught in only one codend
then the proportion retained remains the same even
after adjustment. The scaling approach can lead to
a differential adjustment of the proportions retained
in the experimental codend while (1) suggests an
adjustment for all lengths is required. There is no
good reason why data should be scaled so we rec-
ommend not to do so.

SELECT for subsamples from multiple hauls

Consider a selectivity experiment consisting of
K hauls. The notation used is modified by introduc-
ing k which indexes the kth haul, k = 1, ..., K. For
example, pk is the proportion of the total catch in
haul k that is caught in the experimental codend.
Start, as with a single haul experiment, by defining:

  E N kl1 = f k1p kr klλkl,
E N kl2 = f k2 1 – p k λkl,

The   λkl, (nuisance) parameters are removed in
the single haul experiment by conditioning on nkl+.
Combining multiple hauls and dividing by the to-
tals will remove the nuisance parameters only if the
following conditions are met (for all k):

1. rkl's are equal,

2. pk's are equal, and

3. ƒk1 = ƒk2.

Otherwise the   λkl's must all be equal which is
an unreasonable assumption.

Fryer (1991) and Suuronen and Millar (1992)
have proposed procedures to estimate a common
selectivity when the first assumption does not hold;
we simply test this assumption in the data analysis
using standard likelihood theory. We also test as-
sumption 2 and develop a procedure for estimating
selectivity from multiple hauls with different splits.
The last condition is rarely valid (except for full sam-
pled multiple hauls) and is not assumed here.

The procedure is basically the same as before,
except that the model for the proportion of fish sam-
pled from the experimental codend in the kth haul is:

  φkl =
f klp kr kl

f k2 1 – p k + f klp kr kl
. (3)

The loglikelihood is:

  n kl1θkl – n kl+ log (1 + exp (θkl)) ,Σ
l = l o

L

Σ
k = 1

K

where   θkl = log (f k1 / f k2) + log (p k / (1 – p k)) + log (r kl).
That is, each haul is analyzed individually. Call this
model A.

We test for constant selectivity (model B) by fit-
ting the reduced model: r1l = r2l = ... = rKl for l =
lo,...,L. The likelihood ratio procedure is again used
to compare the full and reduced models, where
twice the difference in loglikelihoods is distributed
as a chi-square random variable with 2(K – 1) de-
grees of freedom. Similarly, we test for a constant
split and selectivity (model C) by fitting the reduced
model: r1l = r2l = rKl and p1 = p2 = ... = pK, for l =
lo,...,L. The likelihood ratio test statistic has 3 (K–1)
degrees of freedom.

Note that if we let:

 pk
* =

f k1p k

f k2 1 – p k +f k1 p k
,

then:

  φkl =
pk

* r kl

1 – pk
* + pk

* r kl
.

Hence, it is possible to estimate a constant se-
lectivity from multiple subsampled hauls without
subsampling fractions using model B.

Standard errors of parameter estimates for
model A are obtained by using the formula in the
previous section; that is, estimate a, b and p and
compute X´WX for each haul. Standard errors for
models B and C can be computed as follows (also
for model A). Redefine X as:

 

X =

X 1
X 2
.
.
.

X K

,

where  the  l th  row o f    X k = ∂θkl/∂β* ′
k and

  β* ′
k = a k, b k, p k . Similarly, let:
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W = ,

and   β*′ = β* ′
1,..., β* ′

k .  Redefine β as:

  

β ′ =

a 1, b 1, p 1,...,a k, b kp k for model A,

a, b, p 1,..., p k for model B,

a, b, p , for model C,

and let   G = ∂β */∂β′.  The covariance  matrix  for  the
maximum likelihood estimate of β  is  the  inverse
of -G´X´WXG.

Confidence bounds on selectivity curves

If the likelihood ratio tests for constant selec-
tivity or constant splits between hauls fail, then it is
naturally interesting to determine which haul(s) dif-
fer in terms of selectivity or splits. The splits are
scalars so standard multiple comparison proce-
dures may be used. Determining which hauls have
significantly different selectivity curves is more dif-
ficult. Scalar characterizations of the selectivity
curves such as the 50% retention length could be
used with standard multiple comparison proce-
dures, however, such methods will obviously have
low power. A better procedure is to plot the esti-
mated selectivity curve with a confidence interval
from model B or model C and overlay the K selec-
tivity curves from model A. In most situations it
should be clear which hauls have significantly dif-
ferent selectivity, although the estimated selectiv-
ity curve for all hauls will be "contaminated" by the
hauls with different selectivity (e.g. the hauls with
different selectivity will tend to mask themselves in
models B or C).

We construct confidence intervals for each
point on a selectivity curve,and we use “Scheffè’s
procedure” (see, for example, Graybill (1976), pg.
197–198) to control the overall significance level.
We assume the null model is correct and that pa-
rameter estimates are normally distributed to com-
pute confidence bounds for rl such that the prob-
ability that the true selectivity exceeds the bounds
at least once is at most α ( α is the significance
level). The confidence bounds are constructed as
follows:  Let   β ′

1 = [a,b] and let V  be the  2 × 2
covariance matrix of the maximum likelihood esti-
mates of   β 1 (denoted as 

  β 1). Then:

  Prob (β1
– β 1)′V –1(β1

– β 1) ≤ χ2
α(2) = 1 – α,

where   χ2
α(2) is the (l –   α)th  quantile of the chi-

square distribution with 2 degrees of freedom. Also,

  
Prob max

h ≠ 0
(h ′(β 1

– β 1))2

h′Vh
≤ χ2

α(2) = 1 – α.

  Let d = h′Vhχ2
α(2), then

Prob h′β 1 – d ≤ h′β 1 ≤ h′β 1 + d ≥ 1 – α

for any h≠0.  If h´ = [1,l] then:

  Prob
exp(a + bl – d)

1 + exp(a + bl – d)
≤ r l ≤ exp(a + bl + d)

1 + exp(a + bl + d)
≥1–α.

The lower and upper bounds in the probability
expression give the s imul taneous conf idence
bounds for the selectivity function rl. These bounds
have at least 1 – α coverage for any or all points on
the selectivity curve.

Data

A selectivity study for Atlantic cod, Gadus
morhua, using nominal 135 mm square mesh was
conducted in NAFO Div. 2J+3KL during February
1992, using a 52 m commercial stern trawler. A 47
mm Hampijhan trawl was converted to a trouser
trawl with a vertical divider panel and twin codends.
The footrope length was 61 m and the headline
length was 47 m. The mesh size was 135 mm (k.c.)
in the wings, square and first belly, and 135 mm in
the twin extensions.

Five hauls were performed with this trawl and
sampling was carried out by two fisheries repre-
sentatives. Samples were obtained on deck where
possible, however, sampling was carried out on the
ramp when temperatures were below freezing. Fish
lengths were measured to the nearest centimetre.
The data are presented in Table 1.

Results
Parameter estimates, standard errors and some

estimates of retention lengths are presented in Ta-
ble 2a, 2b and 2c for model A, B and C. The likeli-
hood ratio test statistic of model B versus A (test
for a common selectivity but haul specific splits) is
48.67. The 95th percentile of a chi-square statistic
with 8 degrees of freedom is 15.507 so the conclu-
sion from this test is that selectivity is not constant
among hauls. The likelihood ratio test statistic of
model C versus B (test for a common selectivity and
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TABLE 1. Data for the trouser trawl experiment investigating the selectivity for cod of a 135 mm square
mesh trawl.  nkll and nkl2 are the numbers at each length class (l) caught in the experimental
and control codends of the k’th haul. The fraction subsampled (fs) is in the last row.

Length–class n7l1 n7l2 n9l1 n9l2 n13l1 n13l2 n14l1 n14/2 n15l1 n15l2

26 – – – – – – – 1 – –
27 – – – – – – – 1 – –
28 – – – – – – – 2 – –
29 – – – – – – – 5 – –
30 – – – 2 – 2 – 5 – 1
31 – – – 4 – 4 – 7 – 1
32 – – – 5 – 5 – 7 – 5
33 – 1 – 7 – 7 – 8 – 8
34 – 3 – 12 – 12 – 16 1 12
35 – 3 1 18 – 18 – 14 – 15
36 – – 1 22 – 22 – 15 4 8
37 – 10 – 26 1 26 – 21 3 23
38 – 9 – 22 1 22 – 28 4 24
39 2 15 5 28 2 28 1 35 8 32
40 1 20 6 35 4 35 – 41 7 30
41 1 24 13 31 7 31 3 45 6 36
42 2 21 14 39 7 39 2 35 16 38
43 10 24 15 37 6 37 1 29 17 29
44 5 25 31 29 14 29 8 30 8 20
45 5 20 26 20 11 20 9 28 16 23
46 13 20 22 25 15 25 10 22 15 20
47 9 22 17 13 12 13 6 19 20 20
48 13 27 24 15 13 15 7 14 15 12
49 17 18 26 10 18 10 18 12 20 11
50 12 8 23 10 17 10 11 13 13 6
51 21 16 16 9 14 9 21 6 20 9
52 30 9 17 9 20 9 25 14 13 7
53 27 7 21 2 15 2 23 3 19 4
54 20 9 16 3 14 3 24 2 18 4
55 22 8 22 5 21 5 18 6 14 3
56 17 4 26 4 17 4 27 3 19 3
57 15 4 14 1 15 1 23 4 16 4
58 17 6 12 3 15 3 14 6 9 4
59 15 4 12 1 16 1 21 3 13 4
60 10 1 9 – 8 – 10 1 5 1
61 10 1 3 – 7 – 18 1 8 1
62 11 4 4 1 4 1 11 1 3 0
63 8 2 5 – 6 – 9 – 5 –
64 6 2 4 1 2 1 10 – 1 –
65 3 1 – – 6 – 7 – 2 –
66 3 1 1 1 3 1 5 1 2 –
67 – 1 1 – 2 – 1 – 2 –
68 3 – – 1 1 1 2 – – 1
69 – – – – 1 – – – – 1
70 1 – – – 1 – 1 – – –
71 – – 1 – 1 – 1 – – –
72 1 – – – – – – – – –
73 3 – – – – – 1 – – –
74 – 1 – – – – – – – –
76 1 – – – – – – – – –
77 – – – – 1 – 1 – – –
80 1 – – – – – – – – –
81 1 – – – – – – – – –
83 – 1 – – – – – – – –

     Totals 336 352 408 451 318 451 349 504 342 420
f's 0.70 0.16 0.28 0.02 0.10 0.03 0.59 0.06 0.29 0.03
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split versus a common selectivity but haul specific
splits) is 110.92. The 95th percentile of a chi-square
statistic with 4 degrees of freedom is 9.45 so the
conclusion from this test is that the split is not con-
stant among hauls.

In Table 2a note that the split for haul 9 (0.33)
and haul 13 (0.76) appear different to the split in
hauls 7, 14 and 15 (roughly 0.5) and these hauls
likely lead to the rejection of the likelihood ratio test
of model C versus B. It is not as clear which hauls
have statistically different selectivities. Hauls 7 and
9 have greater 50% retention lengths than the other
hauls do, however, haul 15 had a greater selection
range. Figure 1 presents a better picture of the be-
tween haul variation in selectivity. The estimated
selectivities from models B and C (with 95% confi-
dence bounds) are plotted as lines and the esti-
mated selectivities from model A are plotted as
points. The selectivity from all individual hauls ex-
cept 7 and 13 exceed the confidence bounds of
the joint selectivity from models B or C. It appears
that selectivity varies in a random manner for each
haul, although more so for haul 9. The selectivity
estimated from models B and C are nearly identi-
cal; there is only a small increase in variance as

TABLE. 2A. Parameter estimates and standard errors (in parentheses) for cod size selectivity in a 135 mm square mesh
trawl in a trouser trawl experiment. Selectivity is measured separately for each haul, e.g. model A.

Haul a b p L25 L50 L75

7 -17.36 (1.91) 0.33 (0.04) 0.51 (0.06) 49.34 (1.26) 52.67 (1.61) 56.01 (2.00)
9 -16.56 (1.52) 0.33 (0.04) 0.33 (0.06) 46.86 (1.26) 50.19 (1.57) 53.52 (1.91)

13 -16.84 (1.27) 0.31 (0.03) 0.76 (0.08) 51.41 (2.02) 55.00 (2.32) 58.59 (2.64)
14 -21.79 (1.69) 0.40 (0.04) 0.51 (0.08) 51.62 (1.22) 54.36 (1.42) 57.10 (1.64)
15 -12.53 (1.09) 0.23 (0.03) 0.43 (0.11) 49.49 (2.86) 54.24 (3.41) 59.00 (3.98)

TABLE 2B. Parameter estimates and standard errors (in parentheses) for cod size selectivity in a 135 mm square
mesh trawl in a trouser trawl experiment. Selectivity is measured jointly for all hauls but splits are meas-
ured separately, e.g. model B.

a b p7 p9 p13 p14 p15 L25 L50 L75

-16.00 0.29 0.40 0.53 0.55 0.57 0.72 50.74 54.48 58.22
 (0.57) (0.01) (0.04) (0.05) (0.04) (0.04) (0.05) (0.84) (0.98) (1.13)

TABLE 2C. Parameter estimates and standard errors (in
parentheses) for cod size selectivity in a 135
mm square mesh trawl in a trouser trawl ex-
periment.  Selectivity and splits are meas-
ured jointly for all hauls, e.g. model C.

a b p L25 L50 L75

-16.30 0.30 0.55 50.61 54.27 57.93

 (0.57) (0.01) (0.04) (0.80) (0.94) (1.09)

the result of estimating haul specific splits (model
B). This suggests that the analyses of subsampled
catches with imperfect or no subsampling fractions
is a feasible procedure (recall that model B can be
used to estimate a common selectivity from multi-
ple subsampled hauls without using subsampling
fractions).

Pearson residuals (McCullagh and Nelder,
1989) are plotted for each haul and model in Fig. 2.
They are a good tool to assess model fits. The
residuals from model B (middle column) for hauls
9, 14 and 15 are clearly not homogeneously dis-
tributed within ± 2 as we would expect if the as-
sumption that selectivity is the same in each haul
were correct. Also, the residuals from model C and
haul 13 are mostly positive. This is because the split
appears to be much larger than the splits in other
hauls. The same pattern occurs for haul 9 (split
<<0.5) except that the residuals are mostly nega-
tive. The residual plots from model A and hauls 13
and 14 also suggest that the selectivity model may
not hold for all lengths of fish caught because of
the systematic pattern in the residuals for fish up to
40 cm (perhaps because selectivity is not logistic
in form).

Discussion

The primary utility of the modelling procedures
presented here is in analyzing multiple subsampled
hauls with possibly different selectivity and splits.
Statistical procedures (graphical and analytical) are
developed to assist selectivity researchers in de-
veloping parsimonious models. The usual procedure
of scaling catches by subsampling fractions is dis-
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Fig. 1. Estimated selectivity of cod in a 135 mm square mesh trawl in a trouser trawl
experiment assuming common splits (dotted line) and hauls specific splits
(solid line). The 95% upper and lower confidence bounds are drawn with the
same line types. The estimated selectivities from each haul are plotted.

couraged because this procedure lacks statistical
rigor and will result in invalid inferences, especially
if the subsampling fractions are imprecise. Quite
often in gear selectivity studies it is difficult to get
accurate measurements of the total catch (used in
computing subsampling fractions), hence, the proce-
dures developed here offer greater improvements in
that a common selectivity from multiple subsampled
hauls with imprecise or no subsampling fractions can
be estimated in a more sensible statistical procedure.

The data analysis illustrates some of the utility
of the methods. However, the analysis is not per-
fect. The residual plots (Fig. 2) suggest more of the
variation is due to between-haul variation in selec-
tivity, however, the between-haul variation in splits

is not small. The magnitude of the likelihood ratio
test statistics seems to reflect the relative impor-
tance of the two sources of variation (2:1). Because
of the variability in selectivity (Fig. 1), it is a good
idea to base statistical inferences on the haul by
haul analyses. It is desirable to estimate a common
selectivity, especially when testing differences in
gear types (square and diamond meshes), so fu-
ture extensions in the direction of Fryer (1991) may
lead to improved estimation procedures. Similar
extensions for variable splits could be considered,
however, because these are nuisance parameters
and because the procedures developed here are
app l icab le  to  subsampled ca tches  w i thou t
subsampling fractions it is not clear that this would
yield significant improvements.
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Fig. 2. Pearson residuals (observed minus expected divided by the standard deviation) from each model
fit and for each haul. The residuals should be roughly homogeneously distributed within   ±2.
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