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Abstract

Statistical methods were used to describe and forecast monthly mean air and bottom water
temperatures from 3 sites in the Northwest Atlantic region, up to one year in advance. ARIMA
(Auto-Regressive-Integrated-Moving- Average) models were developed that accounted for 92% of
the total variability in the long-term time series of monthly means of air temperature and 80% for
bottom water temperatures. These models were then used to forecast conditions in 1999, with
results showing good agreement between the predicted and observed values of both air and bottom
water temperatures. Intervention analysis that models events as step-like features was also carried
out. While this provided a better model fit to the observed data series, such events can not be
predicted. Since nearly all fitted interventions appeared during winter (December—March), prediction
of temperatures during these months must be viewed with caution. Results showed that the use of
ARIMA models yields better forecasts for highly variable time series than simple models based
upon averages of previous monthly averages alone.
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Introduction

Applied fishery science, which concerns the
assessment of fish stocks for fisheries purposes, is
increasingly requesting environmental forecasts in
many areas of the world's oceans. This is because stock
projections are influenced by environmental
conditions such as cooling or warming trends, river
runoff and prevailing wind fields. Forecasting of these
physical parameters can be achieved by solving
differential equations under certain boundary
conditions. Such techniques are commonly applied in
climate modelling, weather forecasting, and ocean
modelling. Another approach is to use statistical
techniques based upon persistence in the climate
variable one wishes to forecast.

In this paper we explore statistical forecasting
techniques using linear and stochastic-dynamic
models (Box and Jenkins 1976). In particular, we use
univariate Auto-Regressive-Integrated-Moving-
Average (ARIMA) models to forecast monthly mean

air and bottom water temperatures in the Northwest
Atlantic region. Intervention techniques that identify
and model step-like shifts in the time series are also
applied to obtain better hindcasting of the temperature
series.

In the following section we list the three climate
time series used in our study and present a brief
description of the Box and Jenkins (1976) methods.
We examine the statistical properties of the
temperature time series, develop predictive models and
use them to forecast monthly mean values up to 1 year
ahead. The model forecast results are then compared
to predictions based the monthly averages of the
previous three years. The usefulness of our forecasting
methods is disuccsed and we point out possible
uncertainties in these forecasts.

Materials and Methods

Monthly mean air temperatures were obtained
from Greenland at Egedesminde (68°42.5'N, 51°44.5'W;
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1991-98), and Nuuk (64°11'N, 51°44.5'W; 1960-98).
In addition, monthly mean bottom water temperatures
at Station 27 (off St. John's, Newfoundland) were made
available by the Canadian Department of Fisheries
and Oceans in St. John's, Newfoundland for the period
1960-98. Missing data from Station 27 were linearly
interpolated from adjacent months.

Models to hindcast the three temperature time
series were first developed based upon linear functions
of past values of the series and/or previous random
shocks (or errors) using the ARIMA and intervention
methods described by Box and Jenkins (1976). The
models are predicated on the assumption that present
values can be predicted from its past history. These
linear, stochastic procedures apply to stationary time
series (i.e. no systematic change in mean and variance)
whose data are normally distributed. First- or second-
order differencing (non-seasonal and/or seasonal) can
be applied to obtain a stationary mean. Non-seasonal
or standard differencing is obtained by subtracting
adjacent values in the time series, in our case adjacent
months. Seasonal differencing is subtracting values
one year apart, in our case subtracting the monthly
means in year i from the same month in year i+1,
year i-1 from year i, etc. Further details are provided
in Appendix 1. Logarithmic transformation of the raw
data is used to produce stationary variance and a
normally distributed time series, if required.

Box and Jenkins (1976) formalized the ARIMA
modelling framework by defining three steps to be
carried out in the analysis: identify the model, estimate
the coefficients and verify the model. Identification
of the model (i.e. how many terms to be included) is
based on the autocorrelation function (ACF) and
partial autocorrelation function (PACF) of the
differenced, log-transformed time series (Box and
Jenkins, 1976). Estimation of the coefficients of the
model is carried out by means of the maximum
likelihood method. Verification of the model is done
through diagnostic checks of the residuals (histogram
and normal probability plot of residuals, standardised
residuals and ACF and PACF of the residuals). The
performance of ARIMA models is often tested through
comparison of predictions with observations not used
in the fitted model. In our study, ARIMA models were
constructed using temperature data up to and
including 1998. Data from 1999 were then used to
compare with the model forecasts for that year. A
detailed description of the non-seasonal and seasonal
ARIMA models and the standardised notation used
in this paper is developed in Appendix 1. The software

package Force 4/R Research System (Prat e al., 1998)
developed by the Polytechnical University of Catalonia
was used to fit ARIMA univariate and intervention
models to the time series of both air and bottom water
temperatures.

The accuracy of the ARIMA forecast model was
compared to the average of the monthly means over
the previous three years by examining the variance
accounted for (r?) by both models.

In addition, we describe the temperature time
series in terms of two basic classes of deterministic
components: trend and seasonality. Decomposition of
time series provides additional information on their
structure and dynamics (Chatfield, 1984; Pankratz,
1991). We use the decomposition method "tramo-
seats" (Goémez and Maravall, 1997), which is included
in the software package Force 4/R Research System
and that is an extension of the X—11 decomposition
method (Makridakis et al., 1983). Computationally,
this method analyzes seasonality and trends by
multiple moving averages with appropriate lengths
of the moving averages for each component.

The intervention analysis mentioned above is a
statistical technique that detects and quantifies non-
random changes of a variable in a time series (Box
and Jenkins, 1976; Chatfield, 1984; Pankratz, 1991).
Interventions are non-random because they are due
to external forcing. As documented recently (Stein,
1998), there is large variability in the air temperatures
and ocean temperatures in the Northwest Atlantic
region. Owing to the high serial correlation (lack of
independence between successive observations), the
t-tests for equality of means cannot be used to test for
temperature shifts. Therefore, intervention analysis
is used to identify the significance, magnitude and
form of such temperature shifts (called interventions)
in the time series. While the input of an intervention
represents a pulse shift in a given month, the output
or consequence of that event may be modelled in
several ways. Thus, according to the output, two types
of interventions are defined, i.e. pulse and step. A
pulse intervention represents a temporary event that
affects the level of the temperature regime, and can
be modelled as abrupt (i.e. a pulse intervention at ¢
=1 shifts the level up or down only during period =1)
or delayed (i.e. a pulse intervention at /=1 causes a
decreasing or a increasing response during periods
t+1, t+2, t+3...). The first is called an Additive Outlier
(denoted AO) and the second a Temporary-Change
intervention (denoted TC). Step interventions may be
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thought of as a permanent change in the level of a
time series and are also called Level-Shifts (denoted
LS). Interventions are identified and modelled by
analysing the residuals from the univariate (ARIMA)
models. By carrying out the intervention analysis, we
not only obtained improved model estimates
(parameters) but also were able to better model large
events. However, it is important to note that such
events cannot be predicted and hence can not be used
for forecasting purposes.

Results

Water and air temperatures display important
seasonal (Fig. 1) and inter-annual fluctuations (Fig.
2). The monthly bottom water temperatures at Station
27 show a general negative trend from the 1960s to
the 1990s with quasi-decadal variability including
warming in the late 1990s (Fig. 2A). Especially
prolonged low bottom-water temperatures were
successively recorded during years 1972-75 and
1984-96. Seasonally, maximum water temperatures
occur in January (Fig. 1). In contrast, maximum air
temperatures occur in July (Fig. 1). Air temperatures
in Nuuk show a progressive decline from 1960 to
around 1990 (Fig. 2B). The monthly average air
temperatures at Egedesminde show a progressive
warming trend through the 1990s (Fig. 2C), similar
to Nuuk.

The final ARIMA models we fitted to the monthly
mean air and bottom water temperatures are presented
in Table 1. It was not necessary to log-transform the
data before fitting the models as the raw data were
already normally distributed. Due to the strong
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Fig. 1. Mean monthly temperatures (in °C above/below the
annual mean): (A) bottom waters at Station 27 (1960—
98), (B) air at Nuuk (1960-98) and (C) air at
Egedesminde (1991-98).

seasonal cycle, first differencing was required in all
cases. Standard differencing was only required in the
time series of bottom water temperature at Station 27.
Seasonal ARIMA models were fitted to all time
series: ARIMA model (0,1,1)x 12(0,1,1) for the
bottom water temperatures at Station 27 and ARIMA
models (1,0,0) x 12(0,1,1) for both Egedesminde and
Nuuk air temperatures (see Appendix 1 for details on
notation).

The amount of variability accounted for by the
models ranged from 80% for bottom water temperature
at Station 27 to 92% for both time series of air
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Fig. 2. Observed monthly time series and trend of time series
of: (A) bottom water temperature at Station 27, (B)
air temperature at Nuuk and (C) air temperature at
Egedesminde.



26 J. Northw. Atl. Fish. Sci., Vol. 29, 2001

temperatures (Table 1). Nevertheless, the most
important check of any model is to compare predicted
values with data not used in establishing the model.
Therefore, one-year forecasts of the monthly air and
bottom water temperatures were made, and compared
with the observed values for 1999 (Fig. 3). The
ARIMA model accounted for more variance (#2) then
using the average of the previous 3 years for bottom
water temperatures at Station 27 (0.39/0.80). The
numbers in brackets refer to the explained variance
as given by the average, and the ARIMA model,
respectively and air temperatures at Nuuk (0.86/0.92).
For air temperatures at Egedesminde both methods
yielded about the same accounted for variability (0.90/

0.92).

The intervention analysis revealed 14 significant
events (p<0.05, >3.0 or 1<-3.0;Table 2). Nearly all
of these appeared during winter (December—March),
e.g. January 1978 and January 1983 Additive Outliers
in the bottom water temperatures of Station 27 (Fig.
4). Interventions are the deviations from the predicted
values. Thus, each intervention is the difference
between the observed and the value expected by the
model. For example, the value for the additive outlier
(AO) intervention in January 1978 in the time series
of water temperatures at Station 27 is -0.65°C (as
stated in Table 2). While the expected value for the
water temperature in that month (January 1978) was
-0.34°C, the observed value was -0.99°C.

Discussion

The univariate models for air and bottom water
temperatures reveal that it is reasonable to predict their

short-term future behaviour based on their past history
alone. Models accounted for a large part of the
observed variability arising mainly from the seasonal
pattern and trend. The structure of the temperature
time series was specified for Nuuk and Egedesminde
air temperatures as ARIMA models with standard
autoregressive term of order 1, and seasonal moving
average term of order 1, and for water temperature at
station 27 as ARIMA model with standard and
seasonal moving average terms of order 1. The ARIMA
model yielded considerable higher precision in
forecast for highly variable time series such as the
Station 27 bottom water temperatures (+> = 0.80),
whereas predictions based on the monthly averages
of the previous three years yielded an 72 = 0.39.

The two air-temperature time series show less
difference between the ARIMA model predictions and
those based upon the monthly averages of the previous
3 years. This indicates that the Box-Jenkins methodo-
logy offers the greatest improvement in forecasting
ability over simple averages for those time series with
high interannual variability.

Intervention models developed in this paper for
air temperatures and bottom water temperatures
indicate the existence of temperature shifts which
mostly occur during winter in the Northwest Atlantic
region. The fact that all these large and unexpected
temperature events appeared during wintertime
indicates predictions for winter months must be
viewed with caution since such events cannot be
predicted with the present methodology. Incorporation
of winter data into the ARIMA models would increase

TABLE 1. Seasonal ARIMA models fitted to the monthly temperatures of Station 27, Nuuk and Egedesminde. Time
period used to fit the models, and the resulting models with the 2 are shown. (AR is standard autoregressive
term, MA and MAS are standard and seasonal moving average terms as given in Appendix 1, respectively).

Station Time period Fitted Model r? AR-1 MA-1 MAS-1
Station 27 (NFLD) January 1960 (0,1,1) x 12(0,1,1) 0.80 0.098 0.958
Bottom Water December 1998

Temperature

Nuuk Air January 1960 (1,0,0) x 12(0,1.1) 0.92 0.327 0.958
Temperature December 1998

Egedesminde Air January 1991— (1,0,0) x 12(0,1,1) 0.92 -0.452 0.418

Temperature December 1998
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Fig.3. Comparison of observed monthly temperatures
together with fits (for the period January 91—
December 98 only) and forecasts (for 1999) from
models described in Table 1: (A) bottom water
temperature at Station 27 (no observations for
February and April 1999), (B) air temperature at Nuuk

and (C) air temperature at Egedesminde.

the reliability of monthly mean predictions for the
remainder of the year.

Although the Box and Jenkins (1976) methodo-
logy has been used mainly by the industrial business
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Fig. 4. Temporary Changes (TC) and Additive Outliers (AO)
interventions in March 1963, May 1975, January
1978 and January 1983 for the time series of the
bottom water temperature in Station 27. The effect
of'the intervention is shown by a solid line (right axis),
while the observed series is plotted with a dashed line
(left axis).

managers, economists and engineers, the use of
time-series analysis to model fish population dynamics
(e.g. Lloret et al., 2000; Stergiou et al., 1997; Quinn
and Marshall, 1989) and physical variables (Irvine
and Eberhardt, 1992) has increased in recent years.
These models are important because they may provide
insight into the nature of the system and because of
their capability to produce forecasts. In addition, these
models avoid some of the statistical problems usually
appearing when using pure deterministic and
stochastic-static models, i.e. autocorrelation of the
observations, co-linearity, residual autocorrelation and
non-normal distribution of residuals, which may bias
the fit.
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Appendix 1: Standardized ARIMA notation

ARIMA models have a general form of (p,d,q) where p is the order of the standard autoregressive term
(AR), g is order of the standard moving average term (MA) and d is the order of the differencing. AR describes
how a variable Z, such as temperature, depends on some previous values Z, _, (AR-1), Z_, (AR-2), etc. while
MA describes how this variable Z, depends on a weighted moving average of the available data Z, ,. to Z,,. For
example, for a one-step ahead forecast (say, for ¢ being October) with an AR-1, all weight is given to the
temperature of the immediately previous month (September), while with an AR-2 the weight is given to the
temperature of the 2 immediately previous months (September and August). By contrast, with an MA-1 or
MA-2, a certain weight is given to the temperature of the immediately previous month (September), a smaller
weight is given to the temperature observed two months ago (August) and so forth, i.e. the weights decline in
value exponentially.

The strong seasonally exhibited in most temperature time series renders simple ARIMA modelling
inadequate. In these cases, there is a relationship between Z, and Z,_ where s is the annual cycle, i.e. 12
months. Thus, the multiplicative, seasonal modelling approach which has a general form of ARIMA(p,d,q) x
s(P,D,Q) has been used in this paper. In this form, P is order of the seasonal autoregressive term (ARS), O is
the order of the seasonal moving average term (MAS), D is the order of seasonal differencing and s is the
annual cycle (e.g. s = 12 using monthly data). ARS describes how variable Z depends on Z ,, (ARS-1), Z ,,
(ARS-2), etc., while MAS describes how Z depends on a weighted moving average of the avallable data Z,_, to
Z, ,, For example for a one-step ahead forecast (say, for ¢ being October) and with an ARS-1, all welght is
given to the temperature in the previous October while with an ARS-2, the weight is given to October temperatures
1 and 2 years ago. By contrast, with a MAS-1 or MAS-2, the model gives a certain weight to October temperature
1 year ago, to the October temperature 2 years ago, and so on. These weights decline exponentially. The
standardised notation used in this paper to represent ARIMA (p,d,q)x12(P,D,Q) models gives the following
model equation,

0,(BY®,(B) V"V Z, = C+6,(B)O,(B)a,

This is the standard expression of ARIMA models where B denotes the backward shift operator. By developing
the formula according to the indications written here below, we finally get a linear expression of the ARIMA
model in the form e.g. Z, = 0.60Z ~'+0.30Z 24+ ..40.1Z"'2.... and so on. If we have e.g. B?, then the linear
formula will have a term Zl ,» Which means dependence of 2 months ago, where:

- (])p(B) = 1-¢IB-<])ZB2-...¢pBP is the standard autoregressive operator of order p.
-®,(B)=1-0, B*-®, Bz“'-...(I)PBP“' is the seasonal autoregressive operator of order P.
- V Pis the seasonal differencing operator of order D.

- V4is the differencing operator of order d.

- Z,is the value of the variable of interest at time 7.

-C= u(])p(B) ®,(B) is a constant term, where W is the true mean of the stationary time series being modeled. It
was estimated from sample data using the approximate likelihood estimator approach.

-eq(B) = 1-613-9232-...(9qu is the standard moving average operator of order q.
- GQ(B“')= 1-0, B* -0, B2‘-...®QBQ"' is the seasonal moving average operator of order Q.

S0 0y 05 @ Dy, o, D,560,,...6 5 0, 0,,..., O, are unknown coefficients that were estimated from
sample data using the approximate likelihood estimator approach.

-a, is the error term at time ¢.

- s is the annual period, i.e. 12 months.
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When modelling, two different options can be used: tramo-seats and SCA options (Gomez and Maravall,
1997). The first one (tramo-seats) is able to construct models in a reasonable time for time series whose structure
is relatively easy. This option has been used in our study in all cases.
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